比较污的生物知识,微生物的代谢
能量代谢的中心任务是生物体如何把外界环境中多种形式的最初能源转换成对一切生命活动都能使用的通用能源—— ATP 。对微生物来说,它们可利用的最初能源有三大类即:有机物、日光和还原态无机物。
一、异养微生物的生物氧化
生物氧化是发生在活细胞内的一系列产能性氧反应的总称。生物氧化的形式包括某物质与氧结合、脱氢或失去电子;生物氧化的过程可分为脱氢(或电子)、递氢(或电子)和受氢(或电子)三个阶段;生物氧化的功能则有产能、产还原力和产小分子中间代谢物三种。异养微生物氧化有机物的方式,根据氧化还原反应中电子受体的不同可分成发酵和呼吸两种类型,而呼吸以可分为有氧呼吸和无氧呼吸两种方式。
1 、发酵
发酵是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完成氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。在发酵条件下有机化合物只是部分地被氧化,因此只释放出一小部分的能量。发酵过程的氧化是与有机物的还原偶联在一起的。被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。
发酵的种类有很多,可发酵的底物有糖类、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解,主要分为四种途径:EMP 、 HMP 、 ED 、磷酸解酮酶途径。
EMP 途径
整个 EMP 途径大致可分为两个阶段。第一阶段可认为是不涉及氧化还原反应及能量释放的准备阶段,只是生成两分子的主要中间代谢产物:甘油醛 -3- 磷酸。第二个阶段发生氧化还原反应,合成 ATP 并形成两分子的丙酮酸。在糖酵解过程中,有两分子 ATP 用于糖的磷酸化,但合成出四个分子的 ATP ,因此每氧化一个分子的葡萄糖净得两个 ATP 。
在两分子的 1 , 3- 二磷酯甘油酸的合成过程中,两分子 NAD 被还成为 NADH 。然而,细胞中的 NAD 供应是有限的,假如所有的 NAD 都转化为 NADH ,葡萄糖的氧化就得停止。因为甘油 -3- 磷酸的氧化反应只有在 NAD 存在时才能进行。这一路径可以通过将丙酮酸还原,使 NADH 氧化重新成为 NAD 而得以克服。例如在酵母细胞中丙酮酸被还原成为乙醇,并伴有 CO2 的释放。而在乳酸菌细胞中,丙酮酸被还原成乳酸。对于原核生物细胞,丙酮酸的还原途径是多样的,但有点是一致的:NADH 必须重新被还原成 NAD ,使得酵解过程中的产能反应得以进行。
EMP 途径可为微生物的生理活动提供 ATP 和 NADH ,其中间产物又可为微生物的合成代谢提供碳骨架,并在一定的条件下可逆转合成多糖。
HMP
HMP 途径是从葡萄糖 -6- 磷酸开始的, HMP 途径的一个循环的最终结果是一分子葡萄糖 -6- 磷酸转变成一分子甘油醛 -3- 磷酸,三分子 CO2 和六分子 NADPH 。一般认为 HMP 途径合成不是产能途径,而是为生物合成提供大量的还原力( NADPH )和中间代谢产物。如核酮糖 -5- 磷酸是合成核酸,某些辅酶及组氨酸的原料。另外 HMP 途径中产生的核酮糖 -5- 磷酸,还可以转化为核酮糖 -1 , 5- 二磷酸,在羧化酶作用下固定 CO2 ,对于光能自养菌、化通自养菌具有重要意义。
虽然这条途径中产生的 NADPH 可经呼吸链氧化产能, 1 摩尔葡萄糖经 HMP 途径最终可得到 35 摩尔 ATP ,但这不是代谢中的主要方式。因此,不能把 HMP 途径看作是产生 ATP 的有效机制。大多数好氧和兼性厌氧微生物中都有 HMP 途径,而且在同一微生物中往往同时存在 EMP 和 HMP 途径,单独具有 EMP 和 HMP 途径的微生物较少见。
ED 途径
ED 途径是在研究嗜糖假单胞菌时发现的,在 ED 途径中,葡萄糖 -6- 磷酸首先脱氢产生葡萄糖酸 -6- 磷酸,接着在脱水酶和醛缩酶的作用下,产生一个分子甘油醛 -3- 磷酸和一个分子丙酮酸。然后甘油醛 -3- 磷酸进入 EMP 途径转变成丙酮酸。一分子葡萄糖经 ED 途径最后生成两分子丙酮酸、一分子 ATP 、一分子 NADPH 和 NADH 。ED 途径在革兰代阴性菌中分布广泛,特别是假单胞菌和固氮的某些菌株较多存在。ED 途径可不依赖于 EMP 和 HMP 途径而单独存在,但对于靠底物水平磷酸化获得 ATP 的厌氧菌而言, ED 途径不如 EMP 途径。
磷酸解酮酶途径
磷酸解酮酶途径是明串珠菌在进行异型乳酸发酵过程中分解已糖和戊糖的途径。该途径的特征性酶是磷酸解酮酶,根据解酮酶的不同,把具有磷酸戊糖解酮酶的称为 PK 途径,把具有磷酸已糖解酮酶的称为 HK 途径。在糖酵解过程中生成的丙酮酸可被进一步代谢。在无氧条件下,不同的微生物分解丙酮酸后会积累不同的代谢产物。目前发现多种微生物可以发酵葡萄糖产生乙醇,能进行乙醇发酵的微生物包括酵母菌、根霉、曲霉和某些细菌。
根据在不同条件下代谢产物的不同,可将酵母菌利用葡萄糖进行的发酵分为三种类型:如果以乙醛(丙酮酸脱羧)为受体生成乙醇,这种发酵称为酵母的一型发酵;当环境中存在亚硫酸氢钠时,不能以乙醛作为受体,而以磷酸二羟丙酮作为受体时,产物为甘油,称为酵母的二型发酵;在弱碱性条件下( PH7.6 ),乙醛因得不到足够的氢而积累,两个乙醛分子间会发生歧化反应,一个作为还原剂形成乙酸,一个作为氧化剂形成乙醇,受体为磷酸二羟丙酮,发酵产物为甘油、乙醇和乙酸,称为酵母的三型发酵。
这种发酵方式不产生能量,只能在非生长的情况下进行。不同的细菌进行乙醇发酵时,其发酵途径也各不相同。如厌氧发酵单胞菌是利用 ED 途径分解葡萄糖为丙酮酸,最后得到乙醇。肠杆菌则是利用 EMP 途径来进行乙醇发酵。
许多细菌能利用葡萄糖产生乳酸,这类细菌称为乳酸细菌。根据产物的不同,乳酸发酵有三种类型:同型乳酸发酵(利用 EMP 途径产物只有乳酸)、异型乳酸发酵(利用 PK 乳酸及部分乙醇或乙酸)和双歧发酵(利用双歧双歧杆菌发酵葡萄糖产生乳酸的一条途径)。
2 、呼吸作用
微生物在降解底物的过程中,将释放出的电子交给 NAD ( P )、 FAD 或 FMN 等电子载体,再经电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放出能量的过程,称为呼吸作用。其中以分子氧作为最张终电子受体的称为有氧呼吸,以氧化型化合物作为最终电子受体的称为无氧呼吸。呼吸作用与发酵作用的根本区别在于:电子载体不是将电子直接传递给给底物降解的中间产物,而交给电子传递系统,逐步释放出能量后再将取终电子受体。
有氧呼吸
在发酵过程中,葡萄糖经过糖酵解作用形成的丙酮酸在厌氧化条件下转变成不同的发酵产物,而在有氧呼吸过程中,丙酮酸进入三羧酸循环( TCA )被彻底氧化成水和 CO2 ,同时释放出大量能量。
在 TCA 循环过程中,丙酮酸完全氧化为三个分子的 CO2 ,同时生成四分子的 NADH 和一分子 FADH 2 。NADH 和 FADH 2 可以电子传递系统重新被氧化,由此每一氧化一分子 NADH 可生成三个分子 ATP ,每氧化一分子 FADH 2 可生成两分子 ATP 。另外琥珀酰辅酶 A 在氧化成延胡索酸时,包含着底物水平磷酸化作用,由此产生一分子 GTP ,随后 GTP 转化 ATP 。因此每一次 TCA 循环可生成 15 分子 ATP 。
此外在糖酵解过程中产生的两分子 NADH 可经电子传递链系统重新被氧化,产生 6 分子 ATP 。在葡萄糖转变为两个分子丙酮酸时还可借底物水平磷酸化生成两分子 ATP 。因些需氧微生物在完全氧化葡萄糖的过程中总共可得到 38 分子的 ATP 。
在糖酵解和三羧酸循环过程中形成的 NADH 和 FADH 2 通过电子传递系统被氧化,最终形成 ATP 为微生物的生命活动提供能量。电子传递系统是由一系列氢和电子传递体组成的多酶氧化还原体系。NADH 、 FADH 2 以及其他还原型载体上的氢原子,以质子和电子的形式在其上进行定向传递;其组成酶系是定向有序的,又是不对称的地排列在原核微生物的细胞质膜上或是在真核微生物的线粒体内膜上。这些系统具有两种功能:一是从电子供体接受电子并将电子传递给电子受体;二是通过合成 ATP 把在电子传递过程中释放的一部分能量保存起来。电子传递系统中的氧化还原酶包括:NADH 脱氢酶、黄素蛋白、铁硫蛋白、细胞色素、醌及其化合物。
无氧呼吸
某些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸。无氧呼吸的最终电子受体不是氧,而是像 NO3- 、 NO2- 、 SO42- 、 S2O32- 、 CO2 等这类外源受体。无氧呼吸也需要细胞色素等电子传递体。并在能量分级释放过程中伴随有磷酸化作用,也能产生较多的能量用于生命活动。但由于部分能量随电子转移给最终电子受体,所以生成的能量不如有氧呼吸产生的多。在无氧条件下,某些微生物在没有氧、氮或硫作为呼吸作用的最终电子受体时,可以磷酸盐代替,其结果生成磷化氢,一种易燃气体。在夜晚,气体燃烧会发出绿幽幽的光。
二、自养微生物的生物氧化和 CO2 的固定
一些微生物可以从氧化无机物获得能量,同化合成细胞物质,这类细菌称为化能自养微生物。它们在无机能源氧化过程中通过氧化磷酸化产生 ATP 。
(一)自养微生物的生物氧化
1 、氨的氧化
NH3 同亚硝酸 (NO2 - ) 是可以用作能源的最普通的无机氮化合物,能被硝化细菌所氧化,硝化细菌可分为两个亚群:亚硝化细菌和硝化细菌。氨氧化为硝酸的过程可分为两个阶段,先由亚硝化细菌将氨氧化为亚硝酸,再由硝化细菌将亚硝酸氧化为硝酸。由氨氧化为硝酸是通过这两类细菌依次进行的。硝化细菌都是一些专性好氧的革兰氏阳性细菌,以分子氧为最终电子受体,且大多数是专性无机营养型。它们的细胞都具有复杂的膜内褶结构,这有利于增加细胞的代谢能力。硝化细菌无芽抱,多数为二分裂殖,生长缓慢,平均代时在 l0h 以上,分布非常广泛。
2 、硫的氧化
硫杆菌能够利用一种或多种还原态或部分还原态的硫化合物 ( 包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐 ) 作能源。H 2 S 首先被氧化成元素硫,随之被硫氧化酶和细胞色素系统氧化成亚硫酸盐,放出的电子在传递过程中可以偶联产生四个 ATP 。亚硫酸盐的氧化可分为两条途径,—是直接氧化成 SO42- 的途径,由亚硫酸盐 -- 细胞色素 c 还原酶和末端细胞色素系统催化,产生一个 ATP ;二是经磷酸腺苷硫酸的氧化的途径,每氧化一分子 SO42- 产生动 5 个 ATP 。
3 、铁的氧化
从亚铁到高铁状态的铁的氧化,对于少数细菌来说也是一种产能反应,但从这种氧化中只有少量的能量可以被利用。在低 pH 环境中这种菌能利用亚铁氧化时放出的能量生长。在该菌的呼吸链中发现了—种含铜蛋白质,它与几种细胞色素 c 和一种细胞色素 a 1 氧化酶构成电子传递链。在电子传递到氧的过程中细胞质内有质子消耗,从而驱动用 ATP 的合成。
4 、氢的氧化
氢细菌都是—些呈革兰氏阴性的兼性化能自养茵。它们能利用分子氢氧化产生的能量同化 CO 2 ,也能利用其他有机物生长。氢细菌的细胞膜上有泛醌、维生素 K 2 及细胞色素等呼吸链组分。在该菌中,电子直接从氢传递给电子传递系统,电子在呼吸链传递过程中产生了 ATP 。在多数氢细菌中有两种与氢的氧化有关的酶。—种是位于壁膜间隙或结合在细胞质膜上的不需 NAD 的颗粒状氧化酶,它能够催化以下反应:
H2 → 2H 十 2e -
该酶在氧化氢并通过电子传递系统传递电子的过程中,可驱动质子的跨膜运输,形成跨膜质子梯度为 ATP 的合成提供动力;另—种是可溶性氢化酶,它能催化氢的氧化,而使 NAD 还原的反应。所生成的 NADH 主要用于 CO 2 的还原。
(二) CO2的固定
CO2是自养微生物的唯一碳源,异养微生物也能利用CO2作为辅助的碳源。将空气中的CO2同化成细胞物质的过程,称为CO2的固定作用。微生物有两种同化CO2的方式,一类是自养式,另一类为异养式。在自养式中,CO2加在一个特殊的受体上,经过循环反应,使之合成糖并重新生成该受体。在异养式中, CO2被固定在某种有机酸上。因此异养微生物即使能同化 C02 ,最终却必须靠吸收有机碳化合物生存。
自养微生物同化CO2 所需要的能量来自光能或无机物氧化所得的化学能,固定 CO2的途径主要有以下三条:
1 、卡尔文循环 (Calvin cycle)
这个途径存在于所有化能自养微生物和大部分光合细菌中。经卡尔文循环同化 CO2的途径可划分为三个阶段见图:CO2的固定;被固定的CO2的还原;CO2 受体的再生。卡尔文循环每循环一次,可将六分子CO2同化成一分子葡萄糖,其总反应式为:
6CO2 18ATP 12NAD(P)H — C6H12O6 18ADP 12NAD(P) 18Pi
2 、还原性三竣酸循环固定CO2
这个途径见图是在光合细菌、绿琉细菌中发现的。还原羧酸环的第—步反应是将乙酰 CoA 还原羧化为丙酮酸,后者在丙酮酸羧化酶的催化下生成磷酸烯醇式丙酮酸,随即被羧化为草酰乙酸,草酰乙酸经一系列反应转化为琥珀酰 CoA ,再被还原羧化为 а - 酮戊二酸。а - 酮 戊二酸转化为柠檬酸后,裂解成乙酸和草酰乙酸。乙酸经乙酰 -CoA ,从而合成酶催化生成乙酰 CoA ,从而完成循环反应。每循环—次,可固定四分子CO2,合成一分子草酰乙酸,消耗三分子 ATP 、两分子 NAD(P)H 和—分子 FADH2 。
3 、还原的单羧酸环
这个体系与还原羧酸循环不同,不需要 ATP ,只要有 Fd(red) 就可运转。Fd(red) 由 H 2 或 NADH 2 提供电子生成。光合细菌也有可能利用这个体系把 CO2换成乙酸。
三、能量转换
在产能代谢过程中,微生物通过底物水平磷酸化和氧化磷酸化将某种物质氧化而释放的能量储存于 ATP 高能分子中,对光全微生物而言,则可通过光合磷酸化将光能转变为化学能储存于 ATP 中。
1 、底物水平磷酸化
物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联 ATP 或 GTP 的合成,这种产生 ATP 等高能分子的方式称为底物水平磷酸化。底物水平磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。例如,在 EMP 途径中 1 , 3 —二磷酸甘油酸转变为 3 —磷酸甘油酸以及磷酸烯醇式丙酮酸转变为丙酮酸的过程中都分别偶联着—分子 ATP 的形成;在三磷酸循环过程中,琥珀酰辅酶 A 转变为琥珀酸时偶联着—分子 ATP 的形成。
2 、氧化磷酸化
物质在生物氧化过程中形成的 NADH 和 FADH 2 可通过位于线粒体内膜和细菌质膜上的电子传递系统将电子传递给氧或其他氧化型物质,在这个过程中偶联着 ATP 的合成,这种产生 ATP 的方式称为氧化磷酸化。一分子 NADH 和 FAD H 2 可分别产生 3 个和 2 个 ATP 。
3 、光合磷酸化
光合作用是自然界一个极其重要的生物学过程,其实质是通过光合磷酸化将光能转变成化学能,以用于从 CO 2 合成细胞物质。行光合作用的生物体除了绿色植物外,还包括光合微生物,如藻类、蓝细菌和光合细菌 ( 包括紫色细菌、绿色细菌、嗜盐菌等 ) 。它们利用光能维持生命,同时也为其他生物 ( 如动物和异养微生物 ) 提供了赖以生存的有机物。
(1) 光合色素
合色素是光合生物所特有的色素,是将光能转化为化学能的关键物质。共分三类:叶绿素 (chl) 或细菌叶绿素 (Bchl) ,类胡萝卜素和藻胆素。除光合细菌外,叶绿素 a 普遍存在于光合生物中,叶绿素 a 、 b 共同存在于高等植物、绿藻和蓝绿细菌中,叶绿素 c 存在于褐藻和硅藻中,叶绿素 d 存在于红藻中,叶绿素 e 存在于金黄藻中,褐藻和红藻也含有叶绿素 a 。细菌叶绿素具有和高等植物中的叶绿素相类似的化学结构,两者的区别在于侧链基团的不同,以及由此而导致的光吸收特性的差异。此外,叶绿素和细菌叶绿素的吸收光谱在不同的细胞中也有差异。
所有光合生物都有类胡萝卜素。类胡萝卜素虽然不直接参加光合反应,但它们有捕获光能的作用,能把吸收的光能高效地传给细菌叶绿素 ( 或叶绿素 ) 。而且这种光能同叶绿素 ( 或细菌叶绿素 ) 直接捕捉到的光能一样被用来进行光合磷酸化作用。此外胡萝卜素还有两个作用:一是可以作为叶绿素所催化的光氧化反应的猝灭剂,以保护光合机构不受光氧化损伤,二是可能在细胞能量代谢方面起辅助作用。
藻胆素因具有类似胆汁的颜色而得名,其化学结构与叶绿素相似,都含有四个吡咯环,但藻胆素没有长链植醇基,也没有镁原子,而且四个吡咯环是直链的。
(2) 光合单位
以往将在光合作用过程中还原一分子 C0 2 所需的叶绿素分子数称为光合单位。后来通过分析紫色细菌载色体的结构,获得了对光合单位的进一步认识。光合色素分布于两个“系统”,分别称为“光合系统 I ”和“光合系统 II ”。每个系统即为一个光合单位。这两个系统中的光合色素的成分和比例不同。一个光合单位由一个光捕获复合体和一个反应中心复合体组成。光捕获复合体含有菌绿素和类胡萝卜素,它们吸收一个光子后,引起波长最长的菌绿素 (P870) 激活,从而传给反应中心,激发态的 P870 可释放出一个高能电子。
(3) 光合磷酸化
光合磷酸化是指光能转变为化学能的过程。当—个叶绿素分子吸收光量子时,叶绿素性质上即被激活,导致叶绿素 ( 或细菌叶绿素 ) 释放一个电子而被氧化,释放出的电子在电子传递系统中的传递过程中逐步释放能量,这就是光合磷酸化的基本动力。
①环式光合磷酸化
光合细菌主要通过环式光合磷酸化作用产生 ATP ,这类细菌主要包括紫色硫细菌、绿色硫细菌、紫色非硫细菌和绿色非硫细菌。在光合细菌中,吸收光量子而被激活的细菌叶绿素释放出高能电子,于是这个细菌叶绿素分子即带有正电荷。所释放出来的高能电子顺序通过铁氧还蛋白、辅酶 Q 、细胞色素 b 和 c ,再返回到带正电荷的细菌叶绿素分子。在辅酶 Q 将电子传递给细胞色素 c 的过程中,造成了质子的跨膜移动,为 ATP 的合成提供了能量见图。在这个电子循环传递过程中,光能转变为化学能,故称环式光合磷酸化。环式光合磷酸化可在厌氧条件下进行,产物只有 ATP ,无 NADP(H) ,也不产生分子氧。
②非环式光合磷酸化
高等植物和蓝细菌与光合细菌不同,它们可以裂解水,以提供细胞合成的还原能力。它们含有两种类型的反应中心,连同天线色素、初级电子受体和供体一起构成了光合系统 I 和光合系统 II ,这两个系统偶联,进行非环式光合磷酸化见图。在光合系统 I 中,叶绿素分子 P 700 吸收光子后被激活,释放出—个高能电子。这个高能电子传递给铁氧还蛋白 (Fd) ,并使之被还原。还原的铁氧还蛋白在 Fd :NADP 还原酶的作用下,将 NADP 还原为 NADPH 。用以还原 P 700 的电子来源于光合系统 II 。在光合系统 II 中,叶绿素分子 P 680 吸收光子后,释放出一个高能电子。后者先传递给辅酶 Q ,再传给光合系统 I ,使 P 700 还原。失去电子的 P 680 ,靠水的光解产生的电子来补充。高能电子从辅酶 Q 到光合系统 I 的过程中,可推动 ATP 的合成。非环式光合磷酸化的反应式为:
2NADP 2ADP 2Pi 2H2O → 2NADPH 2H 2ATP O2
有些光合细菌虽然只有一个光合系统,但也以非环式光合磷酸化的方式合成 ATP ,如绿硫细菌和绿色细菌。从光反应中心释放出的高能电子经铁硫蛋白、铁氧还蛋白、黄素蛋白,最后用于还原 NAD 生成 NADH 。反应中心的还原依靠外源电子供体,如 S 2- 、 S 2 O 3 2- 等。外源电子供体在氧化过程中放出电子,经电子传递系统传给失去了电子的光合色素,使其还原,同时偶联 ATP 的生成。由于这个电了传递途径也没有形成环式,故也称为非环式光合磷酸化。
高中生物新陈代谢知识点梳理
机体与外界环境之间的物质和能量交换以及生物体内物质和能量的自我更新过程叫做新陈代谢,它也是生物体内全部有序化学变化的总称。下面是我为大家整理的高中生物新陈代谢知识点,希望对大家有所帮助!高中生物新陈代谢知识点梳理:第一节 新陈代谢与酶
名词:
1、酶:是活细胞(来源)所产生的具有催化作用(功能)的一类有机物。大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有的是RNA。
2、酶促反应:酶所催化的反应。
3、底物:酶催化作用中的反应物叫做底物。
语句:
1、酶的发现:①、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;②、1836年,德国科学家施旺从胃液中提取了胃蛋白酶;③、1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;④20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。
2、酶的特点:在一定条件下,能使生物体内复杂的化学反应迅速地进行,而反应前后酶的性质和质量并不发生变化。
3、酶的特性:①高效性:催化效率比无机催化剂高许多。②专一性:每种酶只能催化一种或一类化合物的化学反应。③酶需要适宜的温度和pH值等条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。原因是过酸、过碱和高温,都能使酶分子结构遭到破坏而失去活性。
4、酶是活细胞产生的,在细胞内外都起作用,如消化酶就是在细胞外消化道内起作用的;酶对生物体内的化学反应起催化作用与调节人体新陈代谢的激素不同;虽然酶的催化效率很高,但它并不被消耗;酶大多数是蛋白质,它的合成受到遗传物质的控制,所以酶的决定因素是核酸。
5、既要除去细胞壁的同时不损伤细胞内部结构,正确的思路是:细胞壁的主要成分是纤维素、酶具有专一性,去除细胞壁选用纤维素酶使其分解。血液凝固是一系列酶促反应过程,温度、酸碱度都能影响酶的催化效率,对于动物体内酶催化的最适温度是动物的体温,动物的体温大 都在35℃左右。
6、通常酶的化学本质是蛋白质,主要在适宜条件下才有活性。胃蛋白酶是在胃中对蛋白质的水解起催化作用的。胃蛋白酶只有在酸性环境(最适PH=2左右)才有催化作用,随pH升高,其活性下降。当溶液中pH上升到6以上时,胃蛋白酶会失活,这种活性的破坏是不可逆转的。
高中生物新陈代谢知识点梳理:第二节 新陈代谢与ATP
语句:
1、ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基,~代表高能磷酸键,-代表普通化学键。注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物在水解时,由于高能磷酸键的断裂,必然释放出大量的能量。这种高能化合物形成时,即高能磷酸键形成时,必然吸收大量的能量。
2、ATP与ADP的相互转化:在酶的作用下,ATP中远离A的高能磷酸键水解,释放出其中的能量,同时生成ADP和Pi;在另一种酶的作用下,ADP接受能量与一个Pi结合转化成ATP。ATP与ADP相互转变的反应是不可逆的,反应式中物质可逆,能量不可逆。ADP和Pi可以循环利用,所以物质可逆;但是形成ATP时所需能量绝不是ATP水解所释放的能量,所以能量不可逆。(具体因为:(1)从反应条件看,ATP的分解是水解反应,催化反应的是水解酶;而ATP是合成反应,催化该反应的是合成酶。酶具有专一性,因此,反应条件不同。(2)从能量看,ATP水解释放的能量是储存在高能磷酸键内的化学能;而合成ATP的能量主要有太阳能和化学能。因此,能量的来源是不同的。(3)从合成与分解场所的场所来看:ATP合成的场所是细胞质基质、线粒体(呼吸作用)和叶绿体(光合作用);而ATP分解的场所较多。因此,合成与分解的场所不尽相同。)
3、ATP的形成途径 : 对于动物和人来说,ADP转化成ATP时所需要的能量,来自细胞内呼吸作用中分解有机物释放出的能量。对于绿色植物来说,ADP转化成ATP时所需要的能量,除了来自呼吸作用中分解有机物释放出的能量外,还来自光合作用。
4、ATP分解时的能量利用:细胞分裂、根吸收矿质元素、肌肉收缩等生命活动。
5、ATP是新陈代谢所需能量的直接来源。
高中生物新陈代谢知识点梳理:第三节 光合作用
名词:
1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
语句:
1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。②色素的种类:高等植物叶绿体含有以下四种色素。A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b( ;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素 和叶 素
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)②暗反应阶段: a、CO2的固定:CO2+C5→2C3 b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
5、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
6、光合作用的意义:①提供了物质来源和能量来源。②维持大气中氧和二氧化碳含量的相对稳定。③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。
7、影响光合作用的因素:有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。这些因素中任何一种的改变都将影响光合作用过程。如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的 方法 ,来提高作物的产量。再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。
8、光合作用过程可以分为两个阶段,即光反应和暗反应。前者的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。虽然光反应产生了足够的ATP和〔H〕,但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。
9、在光合作用中:a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。
高中生物新陈代谢知识点梳理:第四节 植物对水分的吸收和利用
名词:
1、水分代谢:指绿色植物对水分的吸收、运输、利用和散失。
2、半透膜:指某些物质可以透过,而另一些物质不能透过的多孔性薄膜。
3、选择透过性膜:由于膜上具有一些运载物质的载体,因为不同细胞膜上含有的载体的种类和数量不同,即使同一细胞膜上含有的运载不同物质的载体的数量也不同,因而表现出细胞膜对物质透过的高度选择性。当细胞死亡,膜便失去选择透过性成为全透性。
4、吸胀吸水:是未形成大液泡的细胞吸水方式。如:根尖分生区的细胞和干燥的种子。
5、渗透作用:水分子(或其他溶剂分子)通过半透膜的扩散,叫做~。
6、渗透吸水:靠渗透作用吸收水分的过程,叫做~。
7、原生质:是细胞内的生命物质,可分化为细胞膜、细胞质和细胞核等部分,细胞壁不属于原生质。一个动物细胞可以看成是一团原生质。
8、原生质层:成熟植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质称为原生质层,可看作一层选择透过性膜。
9、质壁分离:原生质层与细胞壁分离的现象,叫做~。
10、蒸腾作用:植物体内的水分,主要是以水蒸气的形式通过叶的气孔散失到大气中。
11、合理灌溉:是指根据植物的需水规律适时、适量地灌溉以便使植物体茁壮生长,并且用最少的水获取最大效益。
语句:
1、绿色植物吸收水分的主要器官是根;绿色植物吸收水分的主要部位是根尖成熟区表皮细胞。
2、渗透作用的产生必须具备以下两个条件:a.具有半透膜。 b、半透膜两侧的溶液具有浓度差。
3、植物吸水的方式:①吸胀吸水: a、细胞结构特点:细胞质内没有形成大的液泡。b、原理:是指细胞在形成大液泡之前的主要吸水方式,植物的细胞壁和细胞质中有大量的亲水性物质——纤维素、淀粉、蛋白质等,这些物质能够从外界大量地吸收水分。c、举例:根尖分生区的细胞和干燥的种子。②渗透吸水:a、细胞结构特点:细胞质内有一个大液泡,细胞壁--全透性,原生质层--选择透过性,细胞液具有一定的浓度。b、原理:内因:细胞壁的伸缩性比原生质层的伸缩性小。外因(两侧具浓度差):外界溶液浓度<细胞液浓度→细胞吸水,外界溶液浓度>细胞液浓度→细胞失水;c、验证:质壁分离及质壁分离复原;d、举例:成熟区的表皮细胞等。
4、水分流动的趋势:水往高(溶液浓度高的地方)处走。水密度小,水势低(溶液浓度大);水密度大,水势高(溶液浓度低)。
5.水分进入根尖内部的途径:(1)成熟区的表皮细胞→内部层层细胞→导管(2)成熟区表皮细胞→内部各层细胞的细胞壁和细胞间隙→导管
6、水分的利用和散失:a、利用:1%~5%的水分参与光合作用和呼吸作用等生命活动。b、散失: 95%~ 99%的水用于蒸腾作用。植物通过蒸腾作用散失水分的意义是植物吸收水分和促使水分在体内运输的主要动力。
7、能发生质壁分离的细胞应该是一个渗透系统,是具有大型液泡的活的植物细胞(成熟植物细胞)在处于高浓度的外界溶液中才会有的现象。(人体的细胞,它没有细胞壁,也就不会有质壁分离。玉米根尖细胞没有形成大型液泡,玉米根尖分生区的细胞和伸长区的细胞,形成层细胞和干种子细胞都无大型液泡,主要靠吸胀作用吸水,不会发生质壁分离。洋葱表皮细胞和根毛细胞两种成熟的植物细。)
高中生物新陈代谢知识点梳理:第五节 植物的矿质营养
名词:
1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。
2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、 K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、 Mn、B、 Zn 、Cu 、Mo 、 Cl属于微量元素,巧记:铁门碰醒铜母(驴)。
3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。
语句:
1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。
2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。②利用形式:矿质运输的利用,取决于各种元素在植物体内的存在形式。K在植物体内以离子状态的形式存在,很容易转移,能反复利用,如果植物体缺乏这类元素,首先在老的部位出现病态;N、P、Mg在植物体内以不稳定化合物的形式存在,能转移,能多次利用,如果植物体缺乏这类元素,首先在老的部位出现病态;Ca、Fe在植物体内以稳定化合物的形式存在,不能转移,不能再利用,一旦缺乏时,幼嫩的部分首先呈现病态。
4、合理灌溉的依据:不同植物对各种必需的矿质元素的需要量不同;同一 种植 物在不同的生长发育时期,对各种必需的矿质元素的需要量也不同。5、根细胞吸收矿质元素离子与呼吸作用相关,在一定的氧气范围内,呼吸作用越强,根吸收的矿质元素离子就越多,达到一定程度后,由于细胞膜上的载体的数量有限,根吸收矿质元素离子就不再随氧气的增加而增加。
高中生物新陈代谢知识点梳理:第六节 人和动物体内三大营养物质的代谢
名词:
1、食物的消化:一般都是结构复杂、不溶于水的大分子有机物,经过消化,变成为结构简单、溶于水的小分子有机物。
2、营养物质的吸收:是指包括水分、无机盐等在内的各种营养物质通过消化道的上皮细胞进入血液和淋巴的过程。
3、血糖:血液中的葡萄糖。
4、氨基转换作用:氨基酸的氨基转给其他化合物(如:丙酮酸),形成的新的氨基酸(是非必需氨基酸)。
5、脱氨基作用:氨基酸通过脱氨基作用被分解成为含氮部分(即氨基)和不含氮部分:氨基可以转变成为尿素而排出体外;不含氮部分可以氧化分解成为二氧化碳和水,也可以合成为糖类、脂肪。
6、非必需氨基酸:在人和动物体内能够合成的氨基酸。
7、必需氨基酸:不能在人和动物体内能够合成的氨基酸,通过食物获得的氨基酸。它们是甲硫氨酸、缬氨酸、亮氨酸、异亮氨酸、赖氨酸、苏氨酸、色氨酸、苯丙氨酸等8种。
8、糖尿病:当血糖含量高于160 mg/dL会得糖尿病,胰岛素分泌不足造成的疾病由于糖的利用发生障碍,病人消瘦、虚弱无力,有多尿、多饮、多食的“三多一少”(体重减轻)症状。
9、低血糖病:长期饥饿血糖含量降低到50~80mg/dL,会出现头昏、心慌、出冷汗、面色苍白、四肢无力等低血糖早期症状,喝一杯浓糖水;低于45mg/dL时出现惊厥、昏迷等晚期症状,因为脑组织供能不足必须静脉输入葡萄糖溶液。
语句:
1、糖类代谢、蛋白质代谢、脂类代谢的图解参见课本。
2、糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。三类营养物质之间相互转化的程度不完全相同,一是转化的数量不同,如糖类可大量转化成脂肪,而脂肪却不能大量转化成糖类;二是转化的成分是有限制的,如糖类不能转化成必需氨基酸;脂类不能转变为氨基酸。
3、正常人血糖含量一般维持在80-100mg/dL范围内;血糖含量高于160mg/dL,就会产生糖尿;血糖降低(50-60mg/dL),出现低血糖症状,低于45mg/dL,出现低血糖晚期症状;多食少动使摄入的物质(如糖类)过多会导致肥胖。
4、消化:淀粉经消化后分解成葡萄糖,脂肪消化成甘油和脂肪酸,蛋白质在消化道内被分解成氨基酸。
5、吸收及运输:葡萄糖被小肠上皮细胞吸收(主动运输),经血液循环运输到全身各处。以甘油和脂肪酸和形式被吸收,大部分再度合成为脂肪,随血液循环运输到全身各组织器官中。以氨基酸的形式吸收,随血液循环运输到全身各处。
6、糖类没有N元素要转变成氨基酸,进而形成蛋白质,必须获得N元素,就可以通过氨基转换作用形成。蛋白质要转化成糖类、脂类就要去掉N元素,通过脱氨基作用。
7、唾液含唾液淀粉酶消化淀粉;胃液含胃蛋白酶消化蛋白质;胰液含胰淀粉酶、胰麦芽糖酶、胰脂肪酶、胃蛋白酶(消化淀粉、麦芽糖、脂肪、蛋白质);肠液含肠淀粉酶、肠麦芽糖、肠脂肪酶(消化淀粉、麦芽糖、脂肪、蛋白质)。
8、胃吸收:少量水和无机盐;大肠吸收:少量水和无机盐和部分维生素;小肠吸收:以上所有加上葡萄糖、氨基酸、脂肪酸、甘油;胃和大肠都能吸收的是:水和无机盐;小肠上皮细胞突起形成小肠绒毛,小肠绒毛朝向肠腔一侧的细胞膜有许多小突起称微绒毛微绒毛扩大了吸收面积,有利于营养物质的吸收。
高中生物新陈代谢知识点梳理:第七节 生物的呼吸作用
名词:
1、呼吸作用(不是呼吸):指生物体的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或 其它 产物,并且释放出能量的过程。
2、有氧呼吸:指细胞在有氧的参与下,把糖类等有机物彻底氧化分解,产生二氧化碳和水,同时释放出大量能量的过程。
3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把等有机物分解为不彻底的氧化产物,同时释放出少量能量的过程。
4、发酵:微生物的无氧呼吸。
语句:
1、有氧呼吸:①场所:先在细胞质的基质,后在线粒体。②过程:第一阶段、 (葡萄糖)C6H12O6→2C3H4O3(丙酮酸)+4[H]+少量能量(细胞质的基质); 第二阶段、2C3H4O3(丙酮酸)→6CO2+20[H]+少量能量(线粒体);第三阶段、24[H]+O2→12H2O+大量能量(线粒体)。
2、无氧呼吸(有氧呼吸是由无氧呼吸进化而来):①场所:始终在细胞质基质②过程:第一阶段、和有氧呼吸的相同;第二阶段、2C3H4O3(丙酮酸)→C2H5OH(酒精)+CO2(或C3H6O3乳酸) ②高等植物被淹产生酒精(如水稻), (苹果、梨可以通过无氧呼吸产生酒精);高等植物某些器官(如马铃薯块茎、甜菜块根)产生乳酸,高等动物和人无氧呼吸的产物是乳酸。
3、有氧呼吸与无氧呼吸的区别和联系①场所:有氧呼吸第一阶段在细胞质的基质中,第二、三阶段在线粒体② O2和酶:有氧呼吸第一、二阶段不需O2,;第三阶段:需O2,第一、二、三阶段需不同酶;无氧呼吸--不需O2,需不同酶。③氧化分解: 有氧呼吸--彻底,无氧呼吸--不彻底。④能量释放:有氧呼吸(释放大量能量38ATP )---1mol葡萄糖彻底氧化分解,共释放出2870kJ的能量,其中有1161kJ左右的能量储存在ATP中;无氧呼吸(释放少量能量2ATP)-- 1mol葡萄糖分解成乳酸共放出196.65kJ能量,其中61.08kJ储存在ATP中。⑤有氧呼吸和无氧呼吸的第一阶段相同。
4、呼吸作用的意义:为生物的生命活动提供能量。为其它化合物合成提供原料 。
5、关于呼吸作用的计算规律是: ①消耗等量的葡萄糖时, 无氧呼吸与有氧呼吸产生的二氧化碳物质的量之比为1:3 ②产生同样数量的ATP时无氧呼吸与有氧呼吸的葡萄糖物质的量之比为19:1。如果某生物产生二氧化碳和消耗的氧气量相等,则该生物只进行有氧呼吸;如果某生物不消耗氧气,只产生二氧化碳,则只进行无氧呼吸;如果某生物释放的二氧化碳量比吸收的氧气量多,则两种呼吸都进行。
6、产生ATP的生理过程例如:有氧呼吸、光反应、无氧呼吸(暗反应不能产生)。在绿色植物的叶肉细胞内,形成ATP的场所是: 细胞质基质(无氧呼吸)、叶绿体基粒(光反应)、线粒体(有氧呼吸的主要场所)
高中生物新陈代谢知识点梳理:第八节 新陈代谢的基本类型
名词:
1、同化作用(合成代谢):在新陈代谢过程中,生物体把从外界环境中摄取的营养物质转变成自身的组成物质,并储存能量,这叫做~。
2、异化作用(分解代谢):同时,生物体又把组成自身的一部分物质加以分解,释放出其中的能量,并把代谢的最终产物排出体外,这叫做~。
3、自养型:生物体在同化作用的过程中,能够直接把从外界环境摄取的无机物转变成为自身的组成物质,并储存了能量,这种新陈代谢类型叫做~。
4、异氧型:生物体在同化作用的过程中,不能直接利用无机物制成有机物,只能把从外界摄取的现成的有机物转变成自身的组成物质,并储存了能量,这种新陈代谢类型叫做~。
5、需氧型:生物体在异化作用的过程中,必须不断从外界环境中摄取氧来氧化分解自身的组成物质,以释放能量,并排出二氧化碳,这种新陈代谢类型叫做~。
6、厌氧型:生物体在异化作用的过程中,在缺氧的条件下,依靠酶的作用使有机物分解,来获得进行生命活动所需的能量,这种新陈代谢类型叫做~。
7、酵母菌:属兼性厌氧菌,在正常情况下进行有氧呼吸,在缺氧条件下,酵母菌将糖分解成酒精和二氧化碳。
8、化能合成作用:不能利用光能而是利用化学能来合成有机物的方式(如硝化细菌能将土壤中的NH3与O2反应转化成HNO2,HNO2再与O2反应转化成HN03,利用这两步氧化过程释放的化学能,可将无机物(CO2和H2O合成有机物(葡萄糖)。
语句:
1、光合作用和化能合成作用的异同点:①相同点都是将无机物转变成自身组成物质。 ②不同点:光合作用,利用光能;化能合成作用,利用无机物氧化产生的化学能。
2、同化类型包括自养型和异养型,其中自养型分光能自养--绿色植物,化能自养:硝化细菌;其余的生物一般是异养型(如:动物,营腐生、寄生生活的真菌,大多数细菌);异化类型包括厌氧型和需氧型,其中寄生虫、乳酸菌是厌氧型;其余的生物一般是厌氧型(多数动物和人等)。酵母菌为兼性厌氧型。
微生物得代谢产物主要有哪些?各有什么作用?
微生物的代谢产物可以分为初级代谢产物和次级代谢产物。初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、核苷酸、多糖、脂类、维生素等。通过初级代谢,能使营养物转化为结构物质、具生理活性物质或为生长提供能量,因此初级代谢产物,通常都是机体生存必不可少的物质,只要在这些物质的合成过程的
某个环节上发生障碍,轻则引起生长停止,重则导致机体发生突变或死亡,是一种基本代谢类型。
次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质,如抗生素、毒素、激素、色素等。不同种类的微生物所产生的次级代谢产物不相同,他们可能积累在细胞内,也可能排到外环境中。
大家都在看
-
二十二张照片带你探索世界的奇闻趣事 一颗2000年前的罗马水晶骰子,上面刻有1到6的数字,看起来就像我们今天使用的骰子。云虽然看着轻飘飘,但实际上它们重达数十万磅。不过它们依然能漂浮在空中,真是大自然的神奇力量米伽罗,这个名字在澳洲土著语中意 ... 奇闻怪事01-10
-
奇闻轶事在民间,你听过这九个小传说吗 奇闻轶事在民间,无论是偏远山村里的神秘传说,还是大城市中口耳相传的怪谈,这些故事总能在不经意间引发人们对未知世界的好奇与遐想。今天,我们就从这些民间奇闻中,选取几段鲜为人知的故事,为你展现一个别样的奇 ... 奇闻怪事01-10
-
奇闻轶事:风流岳母 故事发生在宋朝建隆年间,开封府陈留县有个名叫殷境阮的大财主。一日,殷境阮到城南收租,到家时天已经完全黑透。进门之后他轻声喊道:“娘子,我回来了。”连喊几声没人答应,他感觉有些蹊跷,见里屋亮着灯,以为妻 ... 奇闻怪事01-08
-
奇闻异事, 女儿竟是爷爷的转世(故事会) 这是发生在我女儿身上的真事。我爷爷和奶奶大概是在我初中时就去世了,他们去世的时间间隔两三年的样子。小时候,我们经常到爷爷奶奶家走动,所以关系比和姥爷姥姥他们更亲近一些。自从爷爷奶奶离世后,我偶尔也会梦 ... 奇闻怪事12-30
-
二十六张照片带你探索世界的奇闻趣事 1.豪车美女,相得益彰。仅观其背影,便能感知座驾之硬朗不凡,恰似佳人独特气质的延伸2.她是张梓琳,那名震撼世界的美女,她是中国首位世界小姐的总冠军,如此璀璨的荣耀却未曾让她在豪门的世界里迷失方向,而是选择 ... 奇闻怪事12-25
-
内蒙现奇闻:男摸女店主臀部 50 元求特殊服务,监控曝光全过程 事件突发:日常经营中的惊魂侵扰12 月 12 日下午 2 点多,包头市青山区某手工坊内,女店主独自忙碌。一名男顾客进店称要做手机壳,女店主毫无防备地准备物料。就在此时,男顾客突然起身靠近并摸了女店主臀部。女店主 ... 奇闻怪事12-25
-
揭秘世界范围内十大被拍到的神秘生物有哪些 在世界的各个角落,隐藏着很多令人称奇的神秘生物,这些神秘生物不仅丰富了人类对自然界的认知,也激发了人类对于未知世界探索的欲望。现在就一起来探索世界范围内十大被拍到的神秘生物都有哪些。 1.尼斯湖水怪 尼 ... 奇闻怪事12-25
-
分享几个老一辈流传的民间邪门故事 老一辈的人们总是喜欢围坐在昏暗的灯光下,讲述一些让人毛骨悚然的邪门故事,这些故事有的源于古老的传说,有的是对未知世界的恐惧和想象,承载着老一辈人们的独特的文化记忆。现在就分享几个老一辈流传的民间邪门故 ... 奇闻怪事12-25
-
古代奇闻故事:嫂嫂冲凉自言自语被傻兄弟听到,引起两家纠纷 在古代的一个小村庄里,住着一对兄弟,哥哥聪明机智,弟弟却有些傻乎乎的,村里人都称他为“傻弟”。兄弟俩感情深厚,哥哥娶了一位贤良淑德的嫂嫂,嫂嫂不仅温柔善良,还十分能干,家里的琐事都由她一手打理。一天, ... 奇闻怪事12-22
-
奇闻轶事:淫母溺子 故事发生在宋朝元丰年间,开封府陈留县有一个李生的木匠。李生自幼家贫,父母也离世得早,为求生计跟随同村长辈学会木匠手艺。平日靠着给人修房建屋赚钱糊口。眼看李生到了二十岁,到了谈婚论嫁的年纪,但是他不敢奢 ... 奇闻怪事12-20
相关文章
- 国内各种奇闻异事系列(四)
- 二十八张照片带你探索世界的奇闻趣事
- 国内各种奇闻异事系列(一)
- 二十八张照片带你看世界的奇闻趣事
- 值得一看的三国时期的野史小故事 简短有趣
- 世界奇闻怪事大全集 盘点科学无法解释的世界奇闻怪事
- 揭秘发生在2011年7月26日UFO有关的事件有哪些
- 古典奇闻精彩小故事三则
- 民间文学“奇闻逸事”系列之七——秘密
- 古代志怪故事三则:(奇闻类记选译)
- 荒唐还是奇迹?古代野史中的奇闻异事
- 奇闻!美国一监狱男女犯人无“性接触”却受孕,“方法”惊呆众人
- 七绝•奇闻(原创)
- 你见过哪些让人哭笑不得的奇闻异事?来看看这些奇葩事件吧!
- 二十八张图片带你了解世界奇闻趣事
- 稀奇的新闻 盘点2024年十大奇葩新闻
- 外星人与UFO未解之谜大全 盘点历史上惊人的外星人与UFO事件
- 2024成都UFO事件解析 成都天空的不明飞行物是UFO吗
- 18个鲜为人知的奇闻怪事,让你大开眼界!
- 那些令人惊叹的民间奇闻
热门阅读
-
日本gv公司盘点,高质量钙片清秀型美攻美受 07-11
-
盘点中国十大龙现身事件,真龙竟然屡次现身震惊众人 06-27
-
戴旭说出马航失联真相,因为害怕承担责任迟迟不公开 07-05