为什么有些物体温度高到一定程度就会发光?
首先可以肯定地说,温度与发光没有必然联系。因为物体发光有各种方式,如反射发光、光致发光、电致发光、放射发光、化学发光、生物发光等等。与温度有关的发光一般是指光源。
比如我们看到的世界,除了太阳和夜晚的灯光、火光,绝大多数都是反射光表达出来的。能够自身发光的物体叫光源。除了放射、化学、生物发光等,与温度相关的发光是属于能量激发出来的光,只要能量达到了,温度达到了,就能够发出光来。
今天我们只讨论与能量和温度相关的光。
首先了解什么叫“光”
一般说的发光是指可见光,就是人眼睛感受到的亮光,这些亮光有亮有暗,但总体上是人眼感光细胞能够感受到的光。但实际上,人眼还有许多感受不到的光,但有有些动物能够感受到,或者说人类制造的设备仪器能够感受到。
这是因为所谓“光”就是电磁波,而可见光只是电磁波谱中小小一段而已,波长约在380nm~760nm之间,比这个波长短的叫紫外线、X射线、γ射线;比这个波长长的叫无线电(包括长波、短波、微波)、红外线等,这些都是人眼没办法看到的,但有些动物能看到紫外线和红外线,因此看到的世界色彩就与我们人类不一样。
我们人眼能感受到到的只有可见光,由于可见光是一种复合光,根据能量频率和波长不同,大致分为红橙黄绿青蓝紫7色,当然这7色并不是界限分明,每种颜色之间是一个逐渐过渡的过程,这就叫可见光的光谱。
正是由于可见光具有色谱,不同物体对不同波段的光吸收率不一样,人类才能够看到一个色彩斑斓的世界。光的波长越长,频率越低,能量越低。可见光光谱中,红光能量最低,频率最低,波长最长;而紫光;频率最高,能量最高,波长最短。
再来了解一下什么叫温度
温度是表示物体冷热程度的物理量,从微观上说,是指物体分子运动的剧烈程度,分子运动越激烈,温度就越高。从更微观的层面说,发光是电子在跃迁过程中释放出来的光子。任何物质都是由元素组成,而元素是由原子组成,原子是由带正电的原子核和带负电的电子组成。当原子得到外来能量就会让电子跃迁到更高层级,但电子总有回到自己层级的惰性,当能量不能维持它跃升到更高能级的时候,就会跃迁回到自己的轨道,这时就会释放出一个光子。
无数个原子都是放出光子,就会发生发光现象。当能量较低时,发出的电磁波就会以不可见低能光出现,如无线电波、微波、红外线等,这些可以通过仪器测量;能量较高时,就会发出可见光;再高时就会发出超出可见光频率的高能不可见光,如紫外线、X射线、γ射线等。
微观运动除了发出不同频率的电磁波,原子分子运动越剧烈,发出的光能量就越高,同时发出热辐射。这就是温度的由来。衡量温度高低的标尺叫温标,是人类为了表述方便,根据对自然规律长期认识的结果而设定的。
现在执行的温标主要有热力学温标,用符号“K”表示,又称开尔文;华氏温标,用符号“℉”表示,又称华氏度;摄氏温标,用符号“℃”表示,又称摄氏度。其中标准温标是热力学温标,是科学界用于衡量其他温标的一个标尺。
热力学温标理论上将宇宙最低温度设定为0 K(不是OK),俗称绝对零度。绝对零度是分子运动的下限,在这个温度下,分子已经没有动能,是温度的理论下限值。在绝对零度时,所有物质完全没有粒子振动,而空间是由于粒子运动而存在的,因此没有了粒子运动,空间总体积为零。
因此,理论上只要宇宙存在,就不会有绝对零度出现。
摄氏温标与热力学温标1度对应1度,但起点不一样。绝对零度为-273.15摄氏度,即0 K=-273.15 ℃,点为273.15 K=0 ℃,沸点为373.15 K=100 ℃,以此类推;华氏度与摄氏度的对应关系1摄氏度间隔相当1.8华氏度间隔,0 K=-275.13 ℃=-459.67 ℉,冰点273.15 K=0 ℃=32 ℉,沸点373.15 K=100 ℃=212 ℉,以此类推。
温度与可见光的关系
任何物体温度高于绝对零度时,都会发出热辐射,也就是发出电磁波,但在温度较低时,辐射只能以不可见光的方式发出,人眼是看不到的,但通过仪器可以监测到。随着温度升高,辐射能量加大,物体就会发出可见光。
一般来说,当固体温度升高到500摄氏度时,就开始辐射出暗红色的可见光,随着温度升高,光的颜色也会发生变化,按照红-橙红-黄-黄白-白-蓝白的顺序渐变,这就是光的色温和光谱,温度越高,可见光中的蓝色就越多。
气体通过高能激发可发出明亮的可见光,如氙灯就是就是将电极电压提高到数万伏以上,高压击穿氙气而导致在在两极之间形成电弧,发出明亮的光。这种光叫等离子体,又叫电浆光,是由于原子部分电子被剥夺后,形成有正离子和负离子组成的混合气态状光源。
等离子体温度很高,一般都在数千K到数万K。等离子体是物质的第四态,恒星就是以等离子体形态存在。
光谱色温和元素光谱
从上面叙述,我们已经了解了原子得到能量后释放的光子,因此光是能量辐射,是电磁波,而可见光是人眼能够感知到的电磁波。可见光的光谱范围在380nm~760nm左右,波长越长频率越低能量越小,而可见光是一种复合光,大致由红橙黄绿青蓝紫七色过渡组成,其中红色能量最低,紫色能量最高。
这就是光谱,这种光谱通过三棱镜可以色散分离出来。温度越低的光能量也低,因此呈现出红色越多,温度越高的光能量越强,光谱就向蓝色偏移。科学家们就是根据光谱来确定恒星表面温度的,如将恒星分成O、B、A、F、G、K、M等光谱型。
M型光谱的恒星温度最低,表面温度在在2000~3500K,颜色为红色;K型表面温度在3500–5000,颜色为橙色;G型是我们太阳的光谱,表面温度在5000–6000K,颜色为黄色;随着光谱颜色从黄转白转蓝,温度越来越高,如到了O型,表面温度达到了30000K以上,颜色蔚蓝色。
恒星的光谱与温度和质量是密切相关的,一般来说,温度越高,颜色越偏蓝,质量就越大,因此科学家们从恒星的光谱、温度就能够大致得出恒星的质量了。
光谱还与恒星所含有的元素密切相关,因为不同的元素所发出的光谱是有区别的。这是因为不同元素电子跃迁释放出的能量波长不一样,我们知道光的颜色与波长有关,因此不同元素发出的颜色就不一样。比如氢的光谱颜色为绿色,氧的光谱颜色为蓝色,硫的光谱颜色为红色等。
科学家们通过接收到的恒星光谱分析,根据光谱颜色谱线不同,就能够分析出这颗恒星的成分及大致比例。
这就是物体发光的原因及其不同光谱所包含的奥秘。感谢阅读,欢迎讨论。如喜欢本人文章,请支持点赞和关注,再次感谢。
大家都在看
-
不要眨眼,这就是虫洞了!! 不要眨眼,这就是虫洞了!!经过他,我们可以去到宇宙的任何一个角落,但你要先经受10万伏的电压才行。当然这只是一个思想实验,但你有没有想过,宇宙中可能存在着一种神秘的通道,能让我们瞬间穿越遥远的星际?这就 ... 宇宙探索11-08
-
诺贝尔物理学奖得主基普·索恩:未来几十年是宇宙探索的转折点 每经记者:唐俊 每经编辑:杨欢基普·索恩(左二) 图片来源:每经记者 唐俊 摄2014年,诺兰导演的科幻电影《星际穿越》上映。伴随着荧幕上的时空穿梭,黑洞、虫洞、引力波、奇点、相对论等高深的物理学词汇,成为大 ... 宇宙探索11-08
-
宇宙物理规律的探索之旅 在浩瀚无垠的宇宙中,隐藏着无数令人着迷的物理规律,就像一本神秘而宏大的天书等待着我们去解读。宇宙间存在多种物理规律,它们共同描述了宇宙的基本结构和运动规律。以下是一些主要的物理规律及其基本含义:万有 ... 宇宙探索11-08
-
借助元宇宙,探索星辰大海的奥秘 借助元宇宙探索星辰大海的奥秘。仰望星空,每一颗星都是一个独特世界吗?它们如何诞生和演化?又将走向何方?宇宙中的暗物质和暗能量是什么?又如何影响宇宙的结构和演化?太空时间和地球时间是同一个概念吗?太空存 ... 宇宙探索11-07
-
“航空”助力“航天”,携手共进探索无尽宇宙 10月30日,神舟十九号载人飞船成功发射。此前的29日,据神舟十九号任务发布会介绍,由中国航空工业集团成都所自主研制的昊龙货运航天飞机“昊龙一号”入围空间站低成本货物运输系统总体方案,获得工程飞行验证阶段合 ... 宇宙探索11-06
-
太空探索的风险:宇宙辐射、极端温度、真空环境的威胁 我刚下班回到家,就迫不及待地坐到书房的电脑前,想要好好聊聊关于神舟十八号的那些事儿。咱国家的航天事业发展速度那简直像火箭一样快!这神舟十八号都成功返航了,厉害啦!可看到航天员被抬出返回舱,心里又揪了一 ... 宇宙探索11-06
-
神舟18号返回全程解析:从太空返地的每个关键步骤 2024年11月4日凌晨,神舟18号载人飞船成功返回了地球,三名航天员叶光富、李聪、李广苏安全着陆在东风着陆场。这一壮丽的航天壮举,不仅代表着中国航天技术的又一次飞跃,更是一次充满挑战与惊险的太空之旅。整个返 ... 宇宙探索11-05
-
宇宙探索与生命奥秘:从银河中心到茶杯 银河系中心是最混乱的区域。詹姆斯·韦伯太空望远镜以其前所未有的红外视角,在这一拥挤动荡的区域中发现了新的特征。这张图像展示的恒星形成区域被称为人马座C,距离银河系中心超大质量黑洞人马座A仅三百光年。照片 ... 宇宙探索11-05
-
揭秘太空里发现五具浮尸是谁? 在浩瀚的太空当中曾经发现过五具浮尸他们分别是苏联的三名宇航员格奥尔基多博罗奥夫斯基、帕克拖帕托查耶夫和弗拉季斯拉夫沃尔科夫,美国的科学家尤金舒梅克和冥王星之父克莱德威廉汤博。 苏联的联盟11号飞船在1971 ... 宇宙探索11-04
-
PandaX暗物质实验首席科学家刘江来:我们对宇宙知之甚少,探索永无止境 【环球网科技综合报道】11月4日上午,第十二届腾讯科学WE大会在成都科幻馆成功举办。本次大会汇聚了五位世界顶级科学家,他们分别是国家最高科学技术奖获得者、中国科学院院士、南方科技大学校长、清华大学教授薛其 ... 宇宙探索11-04
相关文章
- 人类探索宇宙的奥秘
- 神舟18号返回全程解析:从太空返地的每个关键步骤
- 神舟十八号带回“太空宝藏”:28项实验,照亮宇宙奥秘探索之路
- 宇宙探索编辑部:荒诞之旅,科幻寻梦,孤独者的自我救赎
- 宇宙探索与生命奥秘:从银河中心到茶杯
- 宇宙探索:我们为何要走出地球?
- 揭秘太空里发现五具浮尸是谁?
- 中国太空计划的终极目标是什么?宇宙的构造:无尽探索与阶段规划
- PandaX暗物质实验首席科学家刘江来:我们对宇宙知之甚少,探索永无止境
- 我国空间站大揭秘:宇宙探索的“中国力量”
- 【光明时评】在探索宇宙中赓续创新基因
- 神舟十八号的辉煌之旅:太空探索的中国力量,对未知宇宙的好奇
- 在探索宇宙中赓续创新基因
- 你有没有想过,宇宙中竟然存在着个直径达到 2.5 亿光年的超级空洞
- 人工智能与宇宙探索,如何相互推动发展?
- 宇宙怎么运作?探索宇宙的奥秘与规律
- 宇宙探索和天文学 的新发现
- 奥陌陌是外星飞船?天文学家:发射探测器,22年后就能追上它
- “天关”发现60强暂现天体,震撼宇宙直播!
- 中微子:宇宙神秘粒子的探索之旅
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12