美国可控核聚变取得大突破 非也 距离发电还有十万八千里

发布者:天冰天降 2023-10-27 18:39

12月13日,美联社发布了一则重要消息:美国科学家在可控核聚变领域取得了重大进展。随后,美国能源部在社交媒体上表示,加州的劳伦斯·利弗莫尔国家实验室首次实现了净能量增益,并将其称为“清洁能源迈向里程碑”的新技术突破。可控核聚变,也被称为“人造太阳”,如果以上报道属实,那么它将具有与第二次工业革命相媲美的重要意义。在可控核聚变的推动下,人类有望在不久的将来实现能源的巨大解放,并真正迈向太阳系之外。

一、这一天是否真的即将到来

以往的可控核聚变突破报道,通常关注于连续放电时间的突破或等离子体高温达到的程度。而这次的净能量增益指的是产出的能量大于投入的能源,也就是实验中能量投入要小于可控核聚变产生的能量。根据美国公布的数据,此次释放的能量相当于之前投入能量的120%,属于不可持续的核聚变反应。

二、核聚变到底是什么

核聚变的本质是指在超高温高压条件下,由质量较轻的原子核聚合形成较重的原子核。在核聚变过程中,质量的损失将以E=mc²的形式释放出能量。实现核聚变需要考虑原料的来源、原子核的控制以及如何克服电子之间的电磁排斥力等因素。

核聚变的原料一般是氢元素,而海水中的氢元素可以通过电解获得。然而,目前我们使用的是氢的同位素——氘和氚。地球的海洋中含有大约45万亿吨的氘,但要获得纯净的氘元素需要消耗大量电力进行电离。

获得纯净的氘元素后,我们需要控制氘原子,使其不会乱跑,通常采用磁约束、惯性约束和激光约束等方法。这一步骤也需要大量电力。最后,我们需要让原子核相互碰撞,这就需要将原子核外的电子全部去除。

这样就会形成大量带负电的电子等离子体和带正电的原子核。随后,需要施加巨大的压力,以增加原子核的撞击力度和概率。

值得注意的是,核聚变的温度必须达到上亿摄氏度,而这样的设备一旦运行,其消耗的电力不亚于一座小型县城。

因此,启动一次可控核聚变将消耗大量电力。如果获得的能量小于投入的能量,显然这种能源没有意义。

三、美国所称的突破到底达到了什么程度

从过去的报道来看,劳伦斯·利弗莫尔实验室似乎每隔一段时间就会宣布净能量增益的成功。早在2013年,BBC就报道了劳伦斯·利弗莫尔实验室首次实现核聚变的净能量增益。然而,这些突破的能量增益仍然非常有限,远远无法达到商业化应用的要求。

虽然可控核聚变是一项具有巨大潜力的能源技术,但要实现可持续的、商业化的核聚变反应仍然面临许多挑战。目前,科学家们正在全球范围内进行大量的研究和实验,以克服这些挑战。

其中一个主要的挑战是如何建立一个能够持续运行并且产生净能量的核聚变反应堆。虽然已经取得了一些进展,但要实现这一目标仍然需要克服许多技术和工程上的难题。

建造和维护核聚变反应堆的成本也是一个巨大的问题。目前的核聚变实验设施非常昂贵,并且需要大量的资金支持。要将核聚变技术从实验室推广到商业应用,需要降低成本并开发更加高效和可靠的反应堆设计。

最后,核聚变技术还需要解决废物处理和辐射安全等问题。虽然核聚变本身不会产生大量的长期放射性废物,但仍然需要处理反应堆材料和组件,以及处理实验过程中产生的辐射物质。

尽管美国劳伦斯·利弗莫尔国家实验室所宣布的净能量增益突破是一个重要的里程碑,但要实现可控核聚变的商业化应用仍然面临许多技术、经济和安全上的挑战。进一步的研究和发展仍然是必要的,以实现核聚变作为清洁、可持续能源的潜力。

大家都在看

  • 探索宇宙的重大突破:成功发射盐度探测卫星!🚀🌍

    探索宇宙的重大突破:成功发射盐度探测卫星!🚀🌍 我国成功发射盐度探测卫星,海洋探索的新里程碑。1. 近日,我国在航天领域再次取得重大突破,成功发射盐度探测卫星。这一壮举无疑在我国航天史与海洋研究领域都写下了浓墨重彩的一笔。2. 这颗盐度探测卫星肩负着重要 ... 宇宙探索11-14

  • 太空条约:人类探索宇宙的里程碑🚀🌌

    太空条约:人类探索宇宙的里程碑🚀🌌 太空条约意义重大。1. 1967 年的《太空条约》意义重大,107 国参与禁止太空部署大规模杀伤性武器,其背后的原因复杂,挑战也多,值得深入了解。在 20 世纪中叶,世界局势复杂多变,科技发展迅猛,人类对太空的探索也 ... 宇宙探索11-14

  • 你有没有想过,在浩瀚的宇宙深处到底隐藏着多少我们不知道的秘密

    你有没有想过,在浩瀚的宇宙深处到底隐藏着多少我们不知道的秘密 你有没有想过,在浩瀚的宇宙深处到底隐藏着多少我们不知道的秘密?宇宙是怎么诞生的?有没有其他适合人类居住的星球?这些问题一直困扰着我们人类。而詹姆斯·韦伯太空望远镜,就像是一把开启宇宙奥秘之门的神奇钥匙 ... 宇宙探索11-13

  • 地下700米的“玻璃球”,探索宇宙之初 #中微子

    地下700米的“玻璃球”,探索宇宙之初 #中微子 中微子是鬼吗?为什么被称为幽灵粒子?1. 最近我国地下 700 米的江门中微子实验室很火,今天戴老师就来讲讲中微子究竟是什么。2. 中微子并不是大家戏称的阿飘,它和电子、光子一样都是宇宙粒子的一种,只不过它非常 ... 宇宙探索11-13

  • 探索宇宙的奇迹:揭开天文学和天体物理学的面纱

    探索宇宙的奇迹:揭开天文学和天体物理学的面纱 人类一直对宇宙着迷。夜空中我们视为星星和行星的闪烁光点数千年来一直是奇迹、神话和科学探索的主题。天文学,即对天体的研究,以及天体物理学,即将物理学应用于理解宇宙现象,是我们用来探索和理解我们所处的宇宙 ... 宇宙探索11-13

  • 高校学子带福利院孩子参观海拔最高天文馆 探索宇宙奥秘

    高校学子带福利院孩子参观海拔最高天文馆 探索宇宙奥秘 11月11日,拉萨SOS福利院的35名孩子迎来了一次难忘的航空航天科普之旅。在南京航空航天大学研究生支教团(简称“支教团”)的精心组织下,孩子们来到了充满神秘色彩的藏域星球天文体验馆,在这个世界上海拔最高的天 ... 宇宙探索11-12

  • AI 在太空探索中的伦理困境:当机器决定宇宙发现的优先权

    AI 在太空探索中的伦理困境:当机器决定宇宙发现的优先权 在人类探索太空的壮丽征程中,人工智能(AI)正逐渐成为不可或缺的力量。然而,随着其作用的日益凸显,一个严峻的伦理困境也悄然浮现:当机器决定宇宙发展的优先权时,我们该何去何从?AI 凭借其强大的数据处理能力 ... 宇宙探索11-12

  • 探索宇宙终极奥秘:1000万亿年以后的宇宙景象

    探索宇宙终极奥秘:1000万亿年以后的宇宙景象 探索宇宙终极奥秘:1000 万亿年后的宇宙景象。1. 在浩瀚无垠的宇宙中,人类的存在仿佛一粒尘埃,微不足道却又充满好奇。当我们仰望星空,心中不禁涌起无限遐想:在遥远的未来,当时间跨度达到难以想象的 1000 万亿年 ... 宇宙探索11-11

  • 室女座NGC4374透镜星系#宇宙探索

    室女座NGC4374透镜星系#宇宙探索 各位听众朋友们,1. 今天我们将带您穿越浩瀚的宇宙,去探索一个神秘而遥远的天体——室女座 NGC4374 透镜星系。2. 这是一个位于室女座的天文学奇观,以其独特的透镜形状和丰富的星系结构而闻名。3. NGC4374 这个编号 ... 宇宙探索11-11

  • 烟台中小学生“才艺秀”作品选登

    烟台中小学生“才艺秀”作品选登 鲁峰小学二年级一班杨子祺给你一个舞台,秀出最棒的自己!烟台市融媒体中心大小新闻教育频道“厉害了!我的娃”烟台中小学生“才艺秀”专题,欢迎你来投稿。内容不限,唱歌、跳舞、表演、绘画、书法及乐器演奏等都可 ... 宇宙探索11-11