寻找外星生命时为何一定要寻找水?外星生命不能是其他形式吗?
科学家们(生物学家,化学家,天文学家和天体生物学家)并没有坚持生命一定需要水,题主太小看他们的想象力了。
首先来看看水为什么对于生命来说十分重要。我们所认识的生命的基础是各种复杂的生物化学反应。为了让各种物质能够充分接触,高效地参与反应,把它们溶解在某种液态溶剂中是一个理想的选择。此外,把物质溶解在液体中,也是在生物体内运输物质的便利途径。宇宙中,甚至地球上,存在着各种液态物质。而其中,水无疑是一种十分理想的溶剂。
水分子由一个氧原子和两个氢原子构成。两个氢原子与氧原子的连线夹角是104.5度。这样,水分子就有了极性:氧原子的一侧形成了水分子的负极,两个氢原子形成了水分子的正极。正极可以吸引负离子,负极可以吸引正离子。这个特性让水有了十分优秀的溶解能力。
氢和氧在宇宙中都是含量十分丰富的元素,所以水在宇宙中并不少见。真正稀罕的是液态水存在的条件:不能太热,也不能太冷。它只能存在于恒星系内的宜居带(Goldilock Zone)。
天文学家热衷于在太阳系外行星寻找水的另一个重要原因是:在我们目前认识的宇宙中的生命形式当中,100%都是以水为溶剂的。
然而,水的缺点也很明显。固态的水(冰)反射率很高。一旦行星表面形成了一定规模的冰盖,它就会把大部分恒星辐射的能量反射回去,减少行星的能量供给,导致温度继续下降,冰盖继续扩展。这就是地球上反复发生冰川期,甚至几次形成全球冰封的原因。
除了氢和氧,宇宙中其他含量较高的元素包括:氦,碳,氖,铁,氮,硅,镁和硫。下图是银河系中主要化学元素的丰度(单位是百万分之一)。
以这些元素为原料,宇宙会大量产生其他具有一定溶解能力的液态物质。我们来看几个例子。
1. 氨(NH3)
和水一样,氨也是一种含量十分丰富的物质。它的化学性质也和水非常相似。氨对有机物的溶解性甚至比水还好,而且,它还能溶解很多金属单质,如除了铍以外的碱金属和碱土金属。此外,很多与水有关的有机物(如带有羟基OH的醇类)和与氨有关的有机物(如带有氨基NH2的胺类)具有一一对应的关系。
然而,氨也有它的弱点。首先,氨分子之间的氢键强度比水弱得多,所以氨蒸发时吸收的热量只有水的一半,而且氨的表面张力只有水的1/3。所以,氨的融点比水低很多:在一个大气压下,液态氨存在的温度范围是零下78到零下33摄氏度。在这个温度下,化学反应速度十分缓慢,所以,生活在液氨中的生物新陈代谢和进化的速度都应该比地球生物慢得多。
不过,在较高的压强下,氨的融点和沸点都可以相应提高。比如,在60个大气压下,液态氨可以在零下77摄氏度到零上93度范围内存在。这倒是一个比较理想的温度范围,不过,能达到这个气压的行星恐怕很少。
氢键太弱也导致了另一个缺点:液氨不能像水一样和没有极性的有机分子发生疏水反应。疏水反应这对很多地球生物,尤其是动物,是非常重要的。如果没有这样的机制,像细胞膜这样的结构就无法稳定存在了。
细胞膜主要由两层磷脂分子构成。磷脂分子的亲水端向外,疏水端向内,构成细胞膜的骨架。对于这个结构至关重要的是水和磷脂分子之间的疏水反应。显然,在缺乏疏水反应的液氨环境中,生物无法具备细胞膜这种有效隔离同时又能保证物质运输畅通的理想结构。
疏水反应的另一个重要作用是,在生命发展的早期阶段,具有疏水性的有机分子会聚集成团,然后逐渐发展出能够自我复制的复杂分子,如DNA。而在液氨环境中,这个过程也变得十分困难了。
所以,在液氨环境中,我们所认识的很多生物机制都无法运转。如果液氨中能孕育生命的话,它们应该会走上一条和我们完全不同的道路。
下图是一个液氨环境的生命星球的艺术想象图。
2. 甲烷和其他碳氢化合物
甲烷分子包含1个碳原子和4个氢原子。碳和氢都是宇宙中丰度很高的元素,所以甲烷含量也不低。比如,土卫六(泰坦)就包裹着以甲烷含量很高的厚实的大气层,并且表面布满了甲烷湖泊和海洋。
然而,和水相比,甲烷的溶解能力就差了很多。
甲烷分子没有极性,和水相比,溶解能力弱得多。像油或者脂肪这样的脂质可以少量溶解在液态甲烷中。所以,严格来说,基于液态甲烷的生命并非完全不可能,只是要困难得多。为了让其他的有机分子参加生化反应,这些分子必须被连接在油脂分子上。而且,在甲烷世界中的生命活动将会十分迟缓。
以甲烷或其他碳氢化合物为溶剂的生命形式可能性不太大,但是并非绝对没有。天体生物学家克里斯·麦凯( Chris McKay )甚至认为,土卫六上可能就有生命。他认为,如果土卫六上面有生命的话,它们应该需要把复杂的碳氢化合物(如乙烷或乙炔)降解成简单碳氢化合物(如甲烷),从中获得能量。这个过程需要消耗氢气(H2)。对这种假想中的土卫六生命来说,乙烷或乙炔相当于我们的葡萄糖,而氢气相当于我们的氧气。而对土卫六发现,大气层下层的氢气和乙炔含量比上层低,这表明在大气层下层中发生着某种消耗这两种物质的反应。这似乎在证明土卫六表面有生命活动的假设。
3. 氟化氢(HF)
氟化氢和水比较相似,它的分子具有极性,溶解能力很好。在一个大气压下,氟化氢在零下84摄氏度到零上19摄氏度保持液态,这是一个大约100摄氏度的范围。而且,氟化氢分子之间也有很好的氢键。虽然对地球生物来说,氟化氢是有毒的,但是有的有机物却可以在氟化氢中稳定存在。
然而,遗憾的是,氟化氢在宇宙中含量很少(因为氟元素丰度就很低)。
4. 硫化氢(H2S)
从分子式可以看出,硫化氢和水的分子结构十分相似,只是把氧原子换成了同族的硫原子。然而,硫化氢分子的极性比水小,所以它对无机物的溶解能力也相对较弱。
如果一个行星表面有大量液态硫化氢的话,一个可能的来源是火山。在这种情况下,火山可能也会产生一些氟化氢。在硫化氢中混入氟化氢可以有效提高它对矿物质的溶解能力。
居住在硫化氢环境中的植物可能从一氧化碳和二氧化碳得到碳,并释放出一氧化硫(相当于我们的氧气)。
硫化氢的另一个缺点是,保持液态的温度范围很小。当然,提高气压可以缓解这个问题。
上面列举了一些分子结构比较简单,而且比较常见的溶剂。实际上,其他一些看上去更加另类的物质也有支持生命的潜力,比如硫酸,二氧化硅,超临界状态的二氧化碳和氢,高温下的氯化钠,以及低温下的氮和氢等等。
很多科幻电影中都描绘了一种世界大同,人类和各种外星人杂居的宇宙图景。支持不同生命形式的溶剂显然不在考虑范围之内。想象一下,如果你在酒吧端起一杯啤酒时,左边的外星人正在津津有味地品尝一杯硫化氢,右边的外星人却在猛灌一大桶氨水,相信你手上的啤酒也喝不下去了吧。
我们目前只知道一种生命形式——地球生命。这个样本实在太小了。也许宇宙中的生命形式和地球上完全不一样,甚至根本不需要化学反应。比如,在星云或恒星表面,可能生活着等离子体的生命;在中子星上,也可能生活着简并态的生命。这些假设都有一定的理论和试验的支持。在这些假设被推翻之前,我们并不能否定哪怕十分微小的可能性。
不过,从现实的角度出发,在太阳系外行星上寻找水无疑是探索生命最为可靠的一种方法了。因为,我们确信无疑的是,水是可以支持生命活动的。
大家都在看
-
探索宇宙的重大突破:成功发射盐度探测卫星!🚀🌍 我国成功发射盐度探测卫星,海洋探索的新里程碑。1. 近日,我国在航天领域再次取得重大突破,成功发射盐度探测卫星。这一壮举无疑在我国航天史与海洋研究领域都写下了浓墨重彩的一笔。2. 这颗盐度探测卫星肩负着重要 ... 宇宙探索11-14
-
太空条约:人类探索宇宙的里程碑🚀🌌 太空条约意义重大。1. 1967 年的《太空条约》意义重大,107 国参与禁止太空部署大规模杀伤性武器,其背后的原因复杂,挑战也多,值得深入了解。在 20 世纪中叶,世界局势复杂多变,科技发展迅猛,人类对太空的探索也 ... 宇宙探索11-14
-
你有没有想过,在浩瀚的宇宙深处到底隐藏着多少我们不知道的秘密 你有没有想过,在浩瀚的宇宙深处到底隐藏着多少我们不知道的秘密?宇宙是怎么诞生的?有没有其他适合人类居住的星球?这些问题一直困扰着我们人类。而詹姆斯·韦伯太空望远镜,就像是一把开启宇宙奥秘之门的神奇钥匙 ... 宇宙探索11-13
-
地下700米的“玻璃球”,探索宇宙之初 #中微子 中微子是鬼吗?为什么被称为幽灵粒子?1. 最近我国地下 700 米的江门中微子实验室很火,今天戴老师就来讲讲中微子究竟是什么。2. 中微子并不是大家戏称的阿飘,它和电子、光子一样都是宇宙粒子的一种,只不过它非常 ... 宇宙探索11-13
-
探索宇宙的奇迹:揭开天文学和天体物理学的面纱 人类一直对宇宙着迷。夜空中我们视为星星和行星的闪烁光点数千年来一直是奇迹、神话和科学探索的主题。天文学,即对天体的研究,以及天体物理学,即将物理学应用于理解宇宙现象,是我们用来探索和理解我们所处的宇宙 ... 宇宙探索11-13
-
高校学子带福利院孩子参观海拔最高天文馆 探索宇宙奥秘 11月11日,拉萨SOS福利院的35名孩子迎来了一次难忘的航空航天科普之旅。在南京航空航天大学研究生支教团(简称“支教团”)的精心组织下,孩子们来到了充满神秘色彩的藏域星球天文体验馆,在这个世界上海拔最高的天 ... 宇宙探索11-12
-
AI 在太空探索中的伦理困境:当机器决定宇宙发现的优先权 在人类探索太空的壮丽征程中,人工智能(AI)正逐渐成为不可或缺的力量。然而,随着其作用的日益凸显,一个严峻的伦理困境也悄然浮现:当机器决定宇宙发展的优先权时,我们该何去何从?AI 凭借其强大的数据处理能力 ... 宇宙探索11-12
-
探索宇宙终极奥秘:1000万亿年以后的宇宙景象 探索宇宙终极奥秘:1000 万亿年后的宇宙景象。1. 在浩瀚无垠的宇宙中,人类的存在仿佛一粒尘埃,微不足道却又充满好奇。当我们仰望星空,心中不禁涌起无限遐想:在遥远的未来,当时间跨度达到难以想象的 1000 万亿年 ... 宇宙探索11-11
-
室女座NGC4374透镜星系#宇宙探索 各位听众朋友们,1. 今天我们将带您穿越浩瀚的宇宙,去探索一个神秘而遥远的天体——室女座 NGC4374 透镜星系。2. 这是一个位于室女座的天文学奇观,以其独特的透镜形状和丰富的星系结构而闻名。3. NGC4374 这个编号 ... 宇宙探索11-11
-
烟台中小学生“才艺秀”作品选登 鲁峰小学二年级一班杨子祺给你一个舞台,秀出最棒的自己!烟台市融媒体中心大小新闻教育频道“厉害了!我的娃”烟台中小学生“才艺秀”专题,欢迎你来投稿。内容不限,唱歌、跳舞、表演、绘画、书法及乐器演奏等都可 ... 宇宙探索11-11
相关文章
- 华星创业:持续开发三体元宇宙系列产品并在多城市落地元宇宙探索中心
- 探索宇宙终极奥秘:1000万亿年以后的宇宙景象
- 探索元宇宙
- 探索未知的宇宙:揭开宇宙的神秘面纱
- 室女座NGC4374透镜星系#宇宙探索
- 烟台中小学生“才艺秀”作品选登
- 无懈可击的黑洞,遇上无所不透的中微子,结局会如何?
- 人类探索宇宙最大的障碍,是人类短暂的寿命!
- 人类探索宇宙的意义与未来发展的必然性
- 未来科技、星际探索,这些太空电影让你感受宇宙的魅力!
- 带孩子探索星空:宇宙的奇妙物语 #宇宙探索#
- 宇宙奥秘解析:无垠宇宙中藏着何种奥秘?(探索宇宙的成果)
- 不要眨眼,这就是虫洞了!!
- 【探索宇宙奥秘】科学家是如何寻找外星生命的?
- 诺贝尔物理学奖得主基普·索恩:未来几十年是宇宙探索的转折点
- 宇宙物理规律的探索之旅
- 《宇宙探索的新进展与未来方向》
- 借助元宇宙,探索星辰大海的奥秘
- 指尖舞动地理 探索宇宙奥秘
- “航空”助力“航天”,携手共进探索无尽宇宙
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12