观测不到宇宙的尽头,那人类是怎样发现它在「不断膨胀」的?
为什么可观测宇宙之外天体发出的光永远都无法到达地球?
答案是,因为宇宙在膨胀。
为了讲清楚其中的道理,先做一个类比。
想象一个巨大的气球,上面有一只小蚂蚁,正以光速在气球表面爬行。如果气球静止不动,那么蚂蚁就能到达气球表面的任意位置;换句话说,蚂蚁能看到气球表面的全貌。但如果气球本身也在以光速膨胀,那么蚂蚁就无法保证到达气球表面的任意位置了;这意味着,蚂蚁只能看到以其所在位置为中心的一小块区域。蚂蚁能看到的这一小块区域,就是它的“可观测气球表面”。
维斯托·斯里弗
同样的道理,如果宇宙本身也在膨胀,我们就只能看到以地球为中心的一小块宇宙区域,也就是可观测宇宙。
那么问题来了:人类到底如何发现宇宙在膨胀?天文爱好者可能会脱口而出:“这还用问吗?宇宙膨胀是美国大天文学家哈勃在 20 世纪 30 年代初发现的。”
但我要告诉你的是,真实的历史并没有这么简单。
推倒第一张多米诺骨牌的人其实并不是哈勃。此人在我们之前的旅行中曾露过一面。他就是美国天文学家维斯托·斯里弗。
1914 年,斯里弗基于之前讲过的多普勒效应,提出了一种测量星系径向速度的新方法。他用这种新方法研究了 15 个随机选取的螺旋星云,然后惊讶地发现,这 15 个随机选取的螺旋星云都在远离地球而去。
这是人类首次观察到宇宙膨胀的迹象。从这个意义上讲,斯里弗才是发现宇宙膨胀的第一人。
在 1914 年的美国天文学年会上,斯里弗做了一个报告,介绍了自己的发现。报告结束后,全场的天文学家都起立鼓掌,其中就包括当时刚刚成为芝加哥大学博士生的哈勃。
不过,斯里弗后来的学术之路却遍布荆棘。
斯里弗任职的罗威尔天文台,当时只有一台口径为 0.6 米的反射式望远镜。口径如此之小的望远镜,根本无法看到远处的暗淡天体。按理说,罗威尔天文台应该尽快添置口径更大的望远镜。但是 1916 年,罗威尔因病逝世。随后他的遗孀为了争夺遗产,跳出来和天文台打了一场长达 10 年的官司。在这 10 年间,天文台的运营大受干扰,添置新望远镜的计划也被迫搁浅。“巧妇难为无米之炊。”斯里弗就这样退出了竞争的行列。
正所谓“工欲善其事,必先利其器”。要想取得最具革命性的天文学突破,还是要靠最大、最先进的天文望远镜。当时全世界最大、最先进的天文望远镜在哪里呢?答案是美国威尔逊山天文台。
20 世纪 20 年代,威尔逊山天文台最耀眼的明星,就是哈勃。他利用标准烛光,发现银河系只是一个小小的宇宙孤岛。
哈勃
这让他一飞冲天,30 多岁就当选为美国科学院院士和英国皇家学会外籍院士。
1928 年,哈勃在欧洲开会期间,听到了用多普勒效应测量遥远星系速度的最新进展。这唤起了他 14 年前听斯里弗学术报告的回忆。哈勃随即想到这样的问题:遥远星系的径向速度与它们到地球的距离之间,到底有什么关系?
回到威尔逊山天文台后,哈勃开始研究这个问题。测量星系距离,一直是哈勃的拿手好戏;但是测量星系径向速度,哈勃就不太熟悉了。所以,他决定找一个熟悉星系速度测量的助手。他找的这个助手,叫米尔顿·赫马森。
米尔顿·赫马森
赫马森的早年经历异常坎坷。由于家庭原因,他 14 岁就辍学了。
为了谋生,他打过各种零工。1908—1910年,他受雇于威尔逊山天文台,其工作是赶着一支驴队,把建筑材料和物资送上威尔逊山,以支持天文台的建设。在此期间,他认识了一个天文台工程师的女儿,并和她结了婚。1917年,在岳父的推荐下,赫马森当上了威尔逊山天文台的看门人。
尽管出身不好,赫马森却很有上进心。每天晚上,他都会去找天文台的工作人员学习天文摄影技术。没过多久,他就可以独当一面了。
后来,赫马森用猎枪打死了一只偷吃他岳父的山羊的美洲狮,这让他在威尔逊山天文台出了名。他的天文摄影才能,也逐渐引沙普利的注意。
沙普利决定,让赫马森来做自己的观测助手。赫马森抓住了这次机会,表现让沙普利十分满意。1920 年,在沙普利的强力推荐下,只有小学学历的赫马森被任命为威尔逊山天文台的正式职员,到了 1922 年,他又被破格提拔为助理天文学家。
但没受过高等教育,还是给赫马森的学术生涯蒙上了一层阴霾。由于基础不牢和命运不济,他曾两次与重大发现失之交臂。
第一次发生在 1919 年。当时,受一位天文学家的启发,赫马森开始在一个特定的天区搜索太阳系的第九颗行星,并且拍摄了一大堆的照片。他对第九颗行星的搜索,最后以失败告终。到了 1930 年,也就是冥王星被发现的那一年,赫马森的两个朋友重新检查了他之前拍摄的照片。结果发现,赫马森早在 11 年前就已经拍到了冥王星;但悲剧的是,他自己没认出来,所以就丢掉了冥王星之父的殊荣。
第二次发生在 1920 年。那年夏天,赫马森在仙女星云中发现了几个很异常的天体:其亮度会出现周期性的变化。这让他不禁怀疑,自己找到了仙女星云中的造父变星。这个发现,比哈勃在仙女星云中找到造父变星,进而确定仙女星云不在银河系内的历史性突破,要早好几年。兴奋不已的赫马森,立刻标记了这些异常星在仙女星云中的位置,并把结果拿给了沙普利去看。
但不幸的是,坚信银河系是宇宙全部的沙普利,对赫马森的发现根本不屑一顾。他先是盛气凌人地向赫马森解释为什么这些异常星不是造父变星,随后拿出手帕把所有数据抹掉。在这个大权威面前,赫马森没敢坚持自己的想法。这样一来,他就与 20 世纪最重要的天文发现之一擦肩而过。
1928 年,赫马森等到了自己的第三次机会。那年,从欧洲归来的哈勃把赫马森叫到了自己的办公室,邀请他一起研究遥远星系径向速度与它们到地球距离之间的关系。两人决定分工合作。赫马森利用多普勒效应,测量遥远星系的运动速度;哈勃则基于标准烛光,测量这些星系到地球的距离。
1928 年末,赫马森开始了他的测量工作。测量的第一个目标,赫马森故意挑选了一个离地球很远、让斯里弗鞭长莫及的河外星云。为了拍摄这个河外星云的光谱,赫马森在威尔逊山天文台上度过了两个寒冷的夜晚。结果显示,这个河外星云的光谱确实发生了很大的红移。也就是说,它确实在以很高的速度远离地球而去。
赫马森马上给正在焦急等待的哈勃打了电话。听到此消息的哈勃立刻跑回办公室,对赫马森的观测结果进行核对。最后哈勃证实,这个星云正在以 3000 千米 / 秒的速度远离地球。这个数字比斯里弗发现的星系径向速度的最高纪录,还要大整整 1.5 倍。这次观测,后来被哈勃称为赫马森的“星团奇遇”。
到了 1929 年,哈勃和赫马森已经测量了 46 个星系的距离和速度。结果显示,所有的星系都在远离地球。由于其中一大半的星系数据都存在着很大的误差,哈勃只采用了那些他特别信任的数据。基于这些星系的观测数据,哈勃发表了一篇名为《河外星云距离与其径向速度的关系》的论文。
但是,这篇划时代的论文并没有把赫马森列为作者。正因为如此,赫马森后来并没有获得自己应得的荣誉和认可,而仅仅被视为“哈勃背后的男人”。
星系径向速度与到地球距离的关系
这篇论文的核心结论见上图。此图横轴代表星系到地球的距离,其单位是百万秒差距(100 万秒差距约等于 326 万光年);而纵轴代表星系的径向速度,其单位是千米 / 秒。图中的众多圆点,代表哈勃和赫马森测量的那些星系。从图中可以看出,星系的径向速度与它到地球的距离正相关:星系离地球越远,它的退行速度(即远离地球的速度)就越大。
但是正相关仅仅是一个定性的结论。要从定量的角度确定此图中星系退行速度与它们到地球距离之间的数学关系,就没那么容易了。此时的哈勃展现了他惊人的洞察力。他在图中画了一条穿过数据点的直线,然后宣称星系的退行速度正比于它们到地球的距离。
单纯看图 4.5,哈勃的结论完全是个人臆想。但是历史最后证明了哈勃的洞见。
此后两年,哈勃和赫马森一直在测量更遥远星系的速度和距离。他们找到的最遥远的星系,其退行速度高达 20 000 千米 / 秒,而距离则超过 1 亿光年。
1931 年,哈勃与赫马森合写了一篇名为《河外星云的速度 - 距离关系》的论文。这篇论文的核心结论见下图。这回,星系的观测数据与哈勃画的直线完美契合。星系的退行速度与它们到地球的距离成正比。这个结论被人们称为哈勃定律。正是由于这条哈勃定律,人类终于意识到宇宙在膨胀。毫无疑问,这是天文学史上最伟大的发现之一。
星系退行速度与到地球距离成正比
由于这个发现,哈勃再次登上了天文学界的群山之巅。他被后人称为“星系天文学之父”,并被视为历史上最伟大的天文学家之一。至于赫马森,他最终沦为了众多哈勃传记中的一个小小的配角。
不过,哈勃并不是凭借宇宙膨胀的发现登上群山之巅的唯一一人。2018 年10 月,经过数千位天文学家的表决,国际天文联合会决定把哈勃定律更名为哈勃 - 勒梅特定律。
·
作者:王爽
版权归原作者所有
大家都在看
-
牛顿式望远镜里面最真实的土星样子!#天文科普视频 牛顿式望远镜里面最真实的土星样子。视频素材来自:渡部佳则/YoshinoriWATABE。视频剪辑来自:零度星系/天 Z 文在线。如有相关内容侵权,请在作品发布后联系作者删除。转载还请取得授权,并注意保持完整性和注明出处 ... 天文之最11-12
-
可视半径仅30万公里,银河系第二大,天文学家:最担心一幕出现 宇宙中充满了陷阱,这句话一点不假,如果黑洞不与其他天体发生相互作用,我们根本无法察觉到它的存在。由于我们没办法直接去观测黑洞,所以我们不知道黑洞的精确尺寸,以及它的其他性质。一个世纪前,爱因斯坦第一次 ... 天文之最11-04
-
关于日全食,哪个地方会最拥挤呢? 图解:超过4000万人在2024年4月8日这一天可以看到日全食。图源:Scott Olson/Getty Images2024年4月8日,日食制图师Michael Zeiler根据最新的日食访问量估计,可能会有100万游客前往德克萨斯州观看日全食,而印第安 ... 天文之最11-02
-
从伽马射线到无线电波,天文学家如何“听见”宇宙? 宇宙中的信息传递并不局限于光,我们通过不同的电磁波谱段“聆听”宇宙,揭示其隐藏的秘密。电磁波是宇宙中各种天体和事件的信使,无论是炽热的恒星、神秘的黑洞,还是星际之间的物质碰撞,它们都通过不同波长的辐射 ... 天文之最11-02
-
地球之最天文篇:最早的多人驾驶宇宙飞船 1964年10月12日,前苏联发射的“上升1号”飞船、重达320吨,上面三个宇航员中有两名科学家:技术科学家奥克季斯托夫和医学家叶戈罗夫。“上升1号”是世界上最早的多人驾驶的宇宙飞船,它以90.10分钟的周期绕地球运行 ... 天文之最10-30
-
中国天文地理之最——最古老的星表 我国是天文发展最早的国家之一。由于农业生产和指定历法的需要,我们的祖先很早就开始观测天象,并用以定方向、定时间、定季节。星表是把测量出的若干恒星的坐标汇编而成。我国古代曾经多次测编过星表,最早是在战国 ... 天文之最10-12
-
盘点宇宙十大恒星之最:年龄最大的恒星,距离地球190光年 盘点宇宙十大恒星之最。1. 年龄最大的恒星。宇宙中最古老的恒星是 HD140283,它以圣经中活了 969 年的人物玛土撒拉命名,是一颗位于天秤座的贫金属次巨星,介于主序星和巨星之间的天体,距离地球 190 光年。在 2000 ... 天文之最08-23
-
地球之最天文篇:最早穿越小行星带的人造探测器 小行星带是太阳系内介于火星和木星轨道之间的小行星密集区域。天文学家估计这个区域的小行星数量多达50万颗,已经被编号的小行星有12万多颗,98.5%的小行星都在此处被发现。因此这个区域被称为主带,通常称为小行星 ... 天文之最08-20
-
天文启蒙之宇宙中最适宜孕育文明的恒星#K型恒星 天文启蒙:宇宙中最适宜孕育文明的恒星?朋友们好,请问你们认为宇宙中哪一类恒星是最适合孕育文明的?我觉得是 k 型(恒星)。因为 k 型恒星耀斑多,相对“温和”适合于文明,相对太阳来说寿命更长,相对 M 型黄矮 ... 天文之最08-19
-
豆比0175:世界之最-最著名的天文望远镜 无用知识的传播中心。最著名的天文望远镜:哈勃空间望远镜。哈勃空间望远镜是以美国天文学家爱德温·哈勃为名,于1990年4月24日成功发射位于地球的大气层之上的光学望远镜。30多年以来,哈勃空间望远镜不断的将宇宙 ... 天文之最08-16
相关文章
- 你知道安徽的阜阳,到底有多少全国以及世界之最吗?
- 地球之最天文篇:最早的多人驾驶宇宙飞船
- 中国天文地理之最——最古老的星表
- 盘点宇宙十大恒星之最:年龄最大的恒星,距离地球190光年
- 地球之最天文篇:最早穿越小行星带的人造探测器
- 天文启蒙之宇宙中最适宜孕育文明的恒星#K型恒星
- 世界十大宇宙之最
- 豆比0175:世界之最-最著名的天文望远镜
- 中国古代天文学中最重要的恒星之一:北极星
- 夜空中最亮的星——探索城市中的天文奇观
- 什么是已知的最小行星
- 世界之最-天文篇-行星 带你了解太阳系的奥秘
- 宇宙八大之最,你知道多少?
- 地球之最天文篇:最暗的恒星双子褐矮星
- 恒星之最#天文科普视频
- 地球之最天文篇:最快的人造飞行器
- 粒子物理十大不可思议故事!
- 强势围观!盘点史上最强天文学发现,你知道几个?
- 五个“历史之最”都是我国古代的骄傲,也是我们现在的骄傲!
- 玛雅文明有多发达?其中他们的“天文历法”,真是“神乎其技”
热门阅读
-
龙生九子名字及图片 传说龙生性最淫生下九子 07-13
-
彭罗斯阶梯是个走不完的楼梯,用二维视角呈现出来 07-13
-
半老徐娘指多少岁?徐娘忍受不了折磨选择自杀 07-13