简约的哈勃常数,偏差甚小,为何能引发宇宙学危机?
哈勃常数,看似平常,实则危机四伏
自2014年起,哈勃常数的测量值——现在宇宙膨胀的速率,出现了争议。远处星体所得的测量数据比近处星体测量数据小约10%。虽然它们听起来相差不大(事实上并不是这样,巨大的科学成就总是需要最精准的测量值),但它们的不确定性应该只有2%。 从统计学上讲,在2%的不确定性中,10%的误差需要引起重视,并进行调查。从2014年起,人们提出了300多种解决这个“宇宙学危机”的方案。但没有一种方案得到了宇宙学家的普遍赞同,而且随着科学家们继续进行着测量,危机还在加大。

LCDM模型
我们对宇宙学的现代理解正在濒临险境。我们把它概括为 λ-CDM模型,缩写为LCDM模型。像其他科学模型一样,这个模型做了几个基本假设。它假设了广义相对论在宇宙学尺寸下适用,且宇宙具有各向同性,宇宙是平坦的,其中有一些地方是空的,被称作暗物质,不对普通物质有任何反应(CDM就是指冰冷的暗物质)。还有一些其他物质称作暗能量(即λ),在宇宙膨胀中维持着宇宙密度。

一旦这些假设被确立了(在大量观测事实上,它们的确被确立了), LCDM就只有六个自由参数。你需要做各种宇宙测量,去得到这些数据。而你一旦得到了这些参数,就可以预测所有关于宇宙的事,包括且不仅限于现在的宇宙膨胀速率。
固定这些参数的最好方法是宇宙微波背景辐射(CMB),它是宇宙诞生38万年时留下来的光。CMB用处很多,它很宏大,容易测量,容易理解。

当你拥有了CMB测量值之后,就可以像欧洲航天局的普朗克卫星任务一样,填补LCDM的未知部分,掌握住宇宙的整个历史。
通往星星的天梯
这就带来了紧张气氛。早期宇宙测量带给我们大量LCDM参数的信息,这些信息不仅来自CMB,还来自重子声学振荡——早期宇宙中的巨大声波在宇宙中游荡留下的星系的微小位移,以及大量光的元素。

不管你怎样结合早期宇宙测量数据去完成LCDM模型,你最终都会得到哈勃常数大约为68km/s/Mpc。
那么,问题解决了。是吗?不,没有那么快。
你还可以直接测量哈勃常数。你需要测量大量物体的距离和速度,可以选择Ia型超新星,星系性质,米拉变星和一些类型的红巨星。
除了红巨星,其他方法测得的哈勃常数为一个较高的数字——超过74km/s/Mpc。
有趣却有些沮丧的是,红巨星测得的结果恰在这两个极端数字之间——因此,我们迎来了危机。

无解决之路
我们已经有两种截然不同的方法来测量哈勃常数,每一种都经过了实验检验,研究理解。LCDM模型在预测很多宇宙观测上取得了巨大成功,没有人愿意抛弃这个模型。CMB的测量值是精确的——几乎是目前天文学历史上最精准的测量。
从另一方面来说,超新星的测量也是合理的。一些其他的探测器给出了类似的哈勃常数值。早期宇宙与后期宇宙,整体测量与当地测量,大尺度与小尺度,都形成了对比——不管你怎样区分它们,我们始终有两种应当吻合的看法出现了分歧。我们本该有一个普遍的,一致的测量结果,但我们没有。

宇宙学家对这个“危机”很感兴趣,因为自20多年前,我们发现暗能量之后,再没有出现如此有趣之事。当测量结果发生分歧,这是自然界在悄悄告诉我们,这里有一个新的空间,一个新的机会让我们揭开宇宙更多的真相。
迄今为止,已有300多种宇宙危机的解决方案。有人呼吁在CMB上进行更多的物理研究,有人认为暗能量近年研究中在作怪,有人从更基础的方面改变了物理理论,使观测结果变得更复杂。

但是,没有一个方案能解释大量宇宙学事实,我们距达成一致还有很长的路。
我个人相信“一件趣事,很可能是一件错事。”这次危机最无聊的解释是:在我们局部尺度测量哈勃常数的过程中,出现了差错。
但只有时间会告诉我们真相。
BY: Paul M. Sutter
FY: 静狸
如有相关内容侵权,请在作品发布后联系作者删除
转载还请取得授权,并注意保持完整性和注明出处
大家都在看
-
第谷·布拉赫1546—1601:丹麦天文学的奇才与天文表的奠基者 在科学史的长河中,天文学作为一门古老而又不断发展的学科,孕育了无数杰出的天文学家。从古希腊的托勒密到哥白尼,再到开普勒、伽利略,天文学家们不断挑战传统观念,推动人类对宇宙的认识不断深化。在这些伟大人物 ... 天文之最12-15
-
《古易天文》—最古老的“盖天说” 【古易天文】最古老的“盖天说”及“周髀算经”互为表里,充分印证了古代先民创造天文历法的逻辑思维,是无可置凝的:易出于天,天道决定易道,易道决定人道,易数即为天数,即完全揭示出天、地、人融合的哲学观。【 ... 天文之最12-15
-
宇宙中最不可思议的天体:3根高达5光年的星云柱,比太阳系还大 在神秘而浩瀚的宇宙中,你见过最不可思议的天体是什么?这是一个足以引发无尽遐想的问题。在人类短暂的文明史中,我们仰望星空,试图理解我们在哪里,我们是什么,而随着科技的进步,望远镜成为了我们延伸出去的“感 ... 天文之最12-14
-
第谷·布拉赫:丹麦天文学奇才,开启天文精度新时代的先驱者 引言在现代天文学取得辉煌成就的背后,有许多伟大的先驱者为我们揭示了宇宙的奥秘。其中,丹麦天文学家第谷·布拉赫(Tycho Brahe,1546—1601)无疑是17世纪天文学史上的重要人物。他以其卓越的观测技术、严谨的实 ... 天文之最12-14
-
冬至不是“冬天到了”,而是华夏文明最古老的天文刻度 从殷商祭天到唐宋放假,它曾是古代中国的“元旦”文|史砚斋主(专注冷门节气史十年|国家图书馆特聘节气文献顾问)冬至,常被误读为“冬天真正开始的日子”。但翻开《淮南子·天文训》:“日行一度,十五日为一节, ... 天文之最12-13
-
天文奇才第谷·布拉赫:用天文望远镜开启新时代的丹麦天文学巨人 引言在科学史的长河中,天文学作为最古老、最基础的自然科学之一,孕育了无数伟大的天才。第谷·布拉赫(Tycho Brahe,1546—1601)作为16世纪末丹麦天文学界的奇才,以其卓越的天文观测和对天体运动的深刻理解,为 ... 天文之最12-12
-
抄全书《世界之最》第挑战148天 第三章 天文地理最厉害的宇宙爆炸——星系爆炸星系爆炸是宇宙中规模极大的爆炸现象,常见类型有伽马射线暴等 。比如蛇夫座星团的星系爆炸,释放能量达5×10^54焦耳,能容纳15个银河系并排放入其热气体区域 。其成因 ... 天文之最12-12
-
天文学界的奇才:第谷.布拉赫的故事 第谷是谁?他为什么这么牛?首先,简单介绍一下他。第谷·布拉赫,出生于1546年,来自丹麦(当时的丹麦王国)。他不是那种传统意义上的“学者”出身,反而是个非常酷的天文爱好者。小时候就对天上的星星特别感兴趣, ... 天文之最12-10
-
测天之尺:登封观星台上的一千年仰望 凌晨四点,我站在登封告成镇外的土岗上。东方尚未泛白,只有银河如一道巨大的伤口,横亘在嵩山剪影之上。而在我面前,一座由青石垒成的方台沉默矗立——它没有飞檐斗拱的华美,没有雕梁画栋的精致,却以最朴素的几何 ... 天文之最12-10
相关文章
- 世界上只有中国上海市才有的全球独一无二的10大奇景!
- 研究发现:第九行星或许真的存在,但它实在太远也太暗淡了
- 第谷·布拉赫(1546—1601):天文学的奇才与精确观测的奠基者
- 丹麦天文学家:第谷·布拉赫(Tycho Brahe)——天文学史上的巨人
- 《天文学大成:古希腊天文学巅峰,揭开宇宙奥秘的那段辉煌历史》
- 这位丹麦贵族不爱江山爱看星星,结果成了“天文之王”
- 星象预言:诸葛亮的天文奇才
- 第谷·布拉赫:天文学的伟大先驱
- 第谷·布拉赫——丹麦天文学奇才,开启天文精确时代的先驱
- 澳洲天文学家发布银河系新图!细节提升10倍,首次看清恒星生死
- 第谷·布拉赫:天文学的杰出先驱与科学奠基人
- 天文学的立法者!开普勒三大定律揭秘,开启现代天体运动的新时代
- 天文学界的奇才:第谷·布拉赫与《鲁道夫天文表》的辉煌传奇
- 古希腊第一学霸!亚里士多德:从天文学到教育学的全能大师
- 第谷·布拉赫戴金鼻子天文狂人,用20年守望为人算准了宇宙的时间
- “托勒密:古代天文学的巅峰大师,影响千年的希腊化天才”
- 第谷·布拉赫(1546----1601)丹麦天文学界的奇才
- **“揭秘古代天文奇才启的伟大发明:夏历,中华文明的时间密码”
- 第谷·布拉赫是谁?他如何用天文表改变了天文学的未来?
- 第谷·布拉赫:天文学的奇才与《鲁道夫天文表》的传奇
热门阅读
-
龙生九子名字及图片 传说龙生性最淫生下九子 07-13
-
彭罗斯阶梯是个走不完的楼梯,用二维视角呈现出来 07-13
-
半老徐娘指多少岁?徐娘忍受不了折磨选择自杀 07-13
